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Abstract: We give an example of a mathematical model describing quantum mechanical

processes interacting with medium. As a model, we consider the process of heat scattering

of a wave function defined on the phase space. We consider the case when the heat diffusion

takes place only with respect to momenta. We state and study the corresponding modified

Kramers equation for this process. We consider the consequent approximations to this equation

in powers of the quantity inverse to the medium resistance per unit of mass of the particle in

the process. The approximations are constructed similarly to statistical physics, where from

the usual Kramers equation for the evolution of probability density of the Brownian motion of

a particle in the phase space, one deduces an approximate description of this process by the

Fokker–Planck equation for the density of probability distribution in the configuration space. We

prove that the zero (invertible) approximation to our model with respect to the large parameter

of the medium resistance, yields the usual quantum mechanical description by the Schrödinger

equation with the standard Hamilton operator. We deduce the next approximation to the model

with respect to the negative power of the medium resistance coefficient. As a result we obtain

the modified Schrödinger equation taking into account dissipation of the process in the initial

model, and explaining the decoherence of the wave function.
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1. Introduction

In this paper we continue the study of the generalized Kramers equation introduced in

the paper [1].
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In [1], the generalized Kramers equation arose as a mathematical model of the scat-

tering process of waves in the phase space under the action of medium in the heat equi-

librium. This process is irreversible. In [1] it has been shown that, for certain parameters

of the model, the process described by the generalized Kramers equation, is the compo-

sition of a rapid transitional process and a slow process. The slow process, as proved in

loc. cit., is approximately described by the Schrödinger equation used for description of

quantum processes. The obtained approximation of the slow process is reversible. Thus,

we have given an example of an irreversible process (heat scattering of waves in the phase

space), for which it has been shown that the standard reversible quantum mechanical

description of the motion of a particle arises as the asymptotic description of this process

in the zeroth approximation.

The purpose of the present paper is to construct an approximate equation describing

the slow part of the process given by the generalized Kramers equation, with the precision

showing dissipative effects in this process. As a result, we derive the modified Schrödinger

equation taking into account dissipation of the process.

The paper consists of four Sections and the Appendix.

In the next Section we present the setting of the problem, the generalized Kramers

equation for the heat scattering process of waves on the phase space, and the properties

of the operators involved in the generalized Kramers equation.

In Section 3 we recall our earlier results describing the process given by the generalized

Kramers equation. We also give a method for the approximate description of this process

in negative powers of the medium resistance coefficient, and state the main result of

the paper, Theorem 4. In this Theorem we write down an equation describing the slow

component of the studied process, taking into account dissipation. This equation is the

modified Schrödinger equation, in which the process is not invertible. We show that

consequences of the modified Schrödinger equation are the effects of decoherence and

spontaneous jumps between the levels.

In Section 4 we state some further possible directions of research and possibilities of

comparison of the presented model with experiment.

Proof of the main Theorem 4 of the paper is given in the Appendix.

2. Mathematical Setting of the Problem, and the Main Prop-

erties of the Operators in the Equation

Thus, we consider the following mathematical model of a process. A state of the process

at each moment of time t ∈ R is given by a complex valued function ϕ[x, p, t] on the phase

space (x, p) ∈ R2n, where n is the dimension of the configuration space. Coordinates in

the configuration space are given by a tuple of numbers x ∈ Rn, and momenta by a tuple

of numbers p ∈ Rn. (Below everywhere we will write the arguments of a function in the

square brackets, in order to distinguish an argument of a function from multiplication by

a variable.)

The generalized Kramers equation for a function ϕ[x, p, t] is defined as the following
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equation:
∂ϕ

∂t
= Aϕ+ γBϕ, (1)

where Aϕ =
n∑

j=1

(
∂V

∂xj

∂ϕ

∂pj
− pj
m

∂ϕ

∂xj

)
− i

�

(
V −

n∑
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p2j
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)
ϕ (2)

and Bϕ =
n∑

j=1

∂

∂pj

((
pj + i�

∂

∂xj

)
ϕ+ kBTm

∂ϕ

∂pj

)
;

m is the mass of the particle; V [x] is the potential function of external forces acting on

the particle; i is the imaginary unit; � is the Planck constant; γ = β/m is the medium

resistance coefficient β per unit of mass of the particle; kB is the Boltzmann constant; T

is the temperature of the medium.

If we pass in equation (1) to the following dimensionless variables:

p′ =
p√

kBTm
, x′ =

√
kBTm

�
x, V ′[x] =

V [x]

kBT
, (3)

then in the new variables equation (1) takes the following form:

∂ϕ

∂t
= A′ϕ+ γB′ϕ, (4)

where A′ϕ =
kBT

�

( n∑
j=1

(
∂V ′

∂x′j

∂ϕ

∂p′j
− p′j

∂ϕ

∂x′j

)
− i

(
V ′ −

n∑
j=1

(p′j)
2

2

)
ϕ

)
(5)

and B′ϕ =
n∑

j=1

∂

∂p′j

((
p′j + i

∂

∂x′j

)
ϕ+

∂ϕ

∂p′j

)
.

Note that the operator A′ is skew Hermitian, and the operator B′ is neither skew

Hermitian neither self-adjoint. The operator B′ determines the scattering process of the

wave function with respect to momenta and hence non-invertibility of the process. In this

paper we consider the case when γ is a large quantity, i. e. the impact of the operator B′

on the general evolution process of the wave function is large. Properties of the operator

B′ are presented in the following Theorem.

Theorem 1. The operator B′ given by expression (5) has a full set of eigenfunc-

tions (in the class of functions ϕ[x, p] tending to zero at infinity) with the eigenvalues

0,−1,−2, . . . . Respectively, the operator B′ is presented in the following form:

B′ = −
∞∑
k=0

kPk, (6)

where Pk are the projection operators onto the eigenspaces of the operator B′ with eigen-

values −k.
The projection operators Pk satisfy the relations

PkPk = Pk, PkPk′ = 0 for k �= k′, PkB
′ = B′Pk = −kPk (7)
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and E =
∞∑
k=0

Pk, (8)

where E is the identity operator.

Proof of this Theorem will be given simultaneously with the proof of the following

Theorem describing the form of the projection operators Pk.

Denote by Hk
k1...kn

[p]
def
= Hk1 [p1]...Hkn [pn] the product of Hermite polynomials [7]

of the corresponding variables, where k = k1 + ... + kn is the sum of degrees of the

Hermite polynomials in the product. By definition, the Hermite polynomial is given by

the expression

Hkj [pj]
def
= exp

(
p2

2

)(
− ∂

∂pj

)kj

exp

(
−p

2

2

)
. (9)

Let Sk1,...,kn and Ik1,...,kn be the operators given by the expressions

ψk1,...,kn = Sk1,...,kn [ϕ]
def
=

∫
Rn

Hk
k1...kn

[
p′′ + i

∂

∂x′′

]
ϕ[x′′, p′′]dp′′, (10)

ϕk1,...,kn = Ik1,...,kn [ψk1,...,kn ]
def
= (11)

1

(2π)3n/2
1

k1!
...

1

kn!

∫
R2n

ψk1,...,kn [x
′′]Hk

k1...kn
[p′ − s′]e−

(p′−s′)2
2 eis

′(x′−x′′)ds′dx′′.

Theorem 2. The projection operators Pk have the form

Pk =
k∑

k1,...,kn=0

k1+...+kn=k

Ik1,...,knSk1,...,kn , (12)

and the operators Sk′1,...,k′n, Ik1,...,kn satisfy the relations

Sk′1,...,k′nIk1,...,knψk1,...,kn = δk′1,k1 ...δk′n,knψk1,...,kn , (13)

where δk′iki equals 0 if k′i �= ki, and equals 1 if k′i = ki.

In particular, formulas (10), (11) and Theorem 2 imply that

ψ[x′] = S0̄[ϕ]
def
=

∫
Rn

ϕ[x′, p′]dp′, (14)

ϕ0[x
′, p′] = I0̄[ψ]

def
=

1

(2π)3n/2

∫
R2n

ψ[x′′]e−
(p′−s′)2

2 eis
′(x′−x′′)ds′dx′′, (15)

P0ϕ =
1

(2π)3n/2

∫
R3n

ϕ[x′′, p′′]dp′′e−
(p′−s′)2

2 eis
′(x′−x′′)ds′dx′′, (16)

P1ϕ =
n∑

j=1

1

(2π)3n/2

∫
R3n

(
p′′j + i

∂

∂x′′j

)
ϕ[x′′, p′′]dp′′ ×

(p′j − s′j)e
− (p′−s′)2

2 eis
′(x′−x′′)ds′dx′′. (17)
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Note that the operators I0̄ and S0̄ given by formulas (15) and (14) make a bijection

between the set of functions ψ[x′] and the set of eigenfunctions ϕ0[x
′, p′] of the operator

B′ with eigenvalue 0. We shall call the function ψ[x′] = S0̄[ϕ0[x
′, p′]] by the presentation

of the eigenfunction ϕ0[x
′, p′].

Proof of Theorems 1 and 2. Let us substitute into expression (5) the presentation

ϕ[x′, p′, t′] in the form of composition of the Fourier integral with respect to x′ and the

inverse Fourier transform:

ϕ[x′, p′, t′]=
1

(2π)n/2

∫
Rn

ϕ̃[s′, p′, t′]eis
′x′ds′, (18)

where ϕ̃[s′, p′, t′]
def
=

1

(2π)n/2

∫
Rn

ϕ[x′′, p′, t′]e−is
′x′′dx′′, (19)

and we denoted by s′x′ the expression s′x′
def
=
∑n

j=1 s
′
jx
′
j.

We obtain that the operator B′ has the form

B′[ϕ[x′′, p′]] =
1

(2π)n

∫
R2n

n∑
j=1

∂

∂p′j

(
(p′j − s′j)ϕ+

∂ϕ

∂p′j

)
eis

′(x′−x′′)ds′dx′′. (20)

Computing the integral over x′′ in the left hand side of the obtained expression, taking

into account equality (19), we obtain:

B′[ϕ[x′′, p′]] =
1

(2π)n/2

∫
Rn

n∑
j=1

∂

∂p′j

(
(p′j − s′j)ϕ̃+

∂ϕ̃

∂p′j

)
eis

′x′ds′. (21)

The operator
n∑

j=1

∂

∂p′j

(
(p′j − s′j)ϕ̃+

∂ϕ̃

∂p′j

)
, (22)

under the sign of integral in the previous expression, is well known (see, for example, [6]).

This operator has a full set of eigenfunctions in the space of functions tending to zero as

|p′ − s′| tends to infinity. The eigenvalues of this operator are the non-positive integers.

The eigenvalue 0 corresponds to eigenfunctions of the form

ϕ̃0[s
′, p′] = ψ̃[s′]e−

(p′−s′)2
2 ,

where ψ̃[s′] is an arbitrary complex valued function of s′ ∈ Rn.

The remaining eigenfunctions are obtained (as it is easy to check) by differentiation

of the functions ϕ̃0[s
′, p′] with respect to p′j, j = 1, . . . , n, and have the eigenvalues

equal respectively to −1,−2, . . ., depending on the degree of the derivative. Thus, the

eigenfunctions with eigenvalues −k = −(k1 + ...+ kn) are the functions of the form

ψ̃k1...kn [s
′](−1)k ∂

k1

∂p′k11

. . .
∂kn

∂p′knn

e−
(p′−s′)2

2 = ψ̃k1...kn [s
′]Hk

k1...kn
[p′ − s′]e−

(p′−s′)2
2 ,

where ψ̃k1...kn [s
′] are arbitrary complex valued functions of s′ ∈ Rn, and Hk

k1...kn
[p′] =

Hk1 [p
′
1]...Hkn [p

′
n] is the product of Hermite polynomials of the corresponding variables,
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and k = k1 + ...+ kn is the sum of degrees of the polynomials. The Hermite polynomials

of small degrees have the form

H0 = 1, H1[pj] = pj, H2[pj] = p2j − 1. (23)

Let us represent also the functions ψ̃k1...kn [s
′] in the form of Fourier integrals:

ψ̃k1...kn [s
′] =

1

(2π)n/2

∫
Rn

ψk1...kn [x
′′]e−is

′x′′dx′′.

From this formula, taking into account representation (18) of the function ϕ[x′, p′, t′]
through ϕ̃[s′, p′, t′], we obtain that the eigenfunctions ϕk1...kn [x

′, p′] of the operator B′ have
the form (differing only by inessential constant factors from formula (11) of Theorem 1):

ϕk1...kn [x
′, p′] =

1

(2π)n

∫
R2n

ψk1...kn [x
′′]Hk

k1...kn
[p′ − s′]e−

(p′−s′)2
2 eis

′(x′−x′′)ds′dx′′.

It is known [7] that the Hermite polynomials form a complete system of functions and

satisfy the following orthogonality relations:

1

(2π)n/2
1

k1!
...

1

kn!

∫
Rn

Hk′
k′1...k′n

[p′]Hk
k1...kn

[p′]e−
p′2
2 dp′ = δk′1k1 ...δk′nkn , (24)

where δk′iki are equal to 0 if k′i �= ki and equal to 1 if k′i = ki (in these formulas it is

assumed that 0!=1).

This directly implies the statements of Theorems 1 and 2. In particular, the latter

equality of Theorem 1 follows from completeness of the set of eigenspaces of the operator

B′.
Note that in representation of the eigenfunctions of the operator B′ in the form (11)

one can compute the integral over s′. To this end, let us substitute into this formula the

expression defining the Hermite polynomials (9). We obtain

ϕk1,...,kn = Ik1,...,kn [ψk1,...,kn ]= (25)

1

(2π)3n/2
1

k1!
...

1

kn!

(−1)k∂k
∂p′1

k1 ...∂p′n
kn

∫
R2n

ψk1,...,kn [x
′′]e−

(p′−s′)2
2 eis

′(x′−x′′)ds′dx′′.

Further, let us make the change of variables s′ = s′′+ p′ under the integral, and compute

the integral over s′′, using the well known equality that the Fourier transform of the

function exp(−s′′2/2) is the function of the same form. We obtain

ϕk1,...,kn = Ik1,...,kn [ψk1,...,kn ]=

1

(2π)n
1

k1!
...

1

kn!

(−1)k∂k
∂p′1

k1 ...∂p′n
kn

∫
Rn

ψk1,...,kn [x
′′]e−

(x′−x′′)2
2 eip

′(x′−x′′)dx′′ =

(−i)k
(2π)n

1

k1!
...

1

kn!

∫
Rn

ψk1,...,kn [x
′′]

n∏
j=1

(x′ − x′′)kje−
(x′−x′′)2

2 eip
′(x′−x′′)dx′′. (26)
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The latter equality is obtained after differentiation with respect to p′ required in the

formula, but under the sign of the integral.

The latter equality, in the particular case of eigenfunctions of the operator B′ with
the zero eigenvalue, implies the following expression:

ϕ0 = I0̄[ψ0]=
1

(2π)n

∫
Rn

ψ0[x
′′]e−

(x′−x′′)2
2 eip

′(x′−x′′)dx′′. (27)

3. The Schrödinger Equation for the Scattering Process of Waves

and its Refinement

In the papers [1, 3] the following Theorem has been proved.

Theorem 3. The motion described by equation (1) asymptotically splits for large γ

into rapid motion and slow motion.

1) After the rapid motion, an arbitrary wave function ϕ[x, p, 0] approximately goes at

the time of order 1/γ to the function ϕ0 = P0ϕ which, after normalization and in the

initial coordinates, has the following form:

ϕ0[x, p] =
1

(2π�)n/2

∫
Rn

ψ[y]χ[x− y]eip(x−y)/�dy, (28)

where ψ[x] =

(
1

4πkBTm

)n/4∫
Rn

ϕ[x, p, 0]dp and (29)

χ[x− y] =

(
kBTm

π�2

)n/4

e−kBTm(x−y)2/(2�2). (30)

The wave functions of kind (28) form the linear subspace of eigenfunctions of the operator

B given by (2) with eigenvalue zero. The elements of this subspace are parameterized by

wave functions ψ[y, 0] =
∫
Rn ϕ[y, p]dp depending only on coordinates y ∈ Rn.

2) The slow motion starting at the moment t = 0 with the function ϕ0[x, p] of the form

(28) with nonzero function ψ[y] = ψ[y, t]|t=0, goes along the subspace of such functions

and is parameterized by the wave function ψ[y, t] depending on coordinates and time. The

function ψ[y, t] satisfies the following Schrödinger equation: i�∂ψ/∂t = Ĥψ, where the

action of the operator Ĥ for γ →∞ has the form

Ĥψ = − �
2

2m

( n∑
k=1

∂2ψ

∂y2k

)
+ V [y]ψ − kBT

2
nψ +O(γ−1). (31)

The coefficient in formula (30) is chosen so that the mapping given by formula (28)

preserves the standard scalar product in the Hilbert spaces of functions ψ and ϕ0.

Proof of the first part of Theorem 3 is given in [3]. Proof of the second part of this

Theorem is given in [1]. (This formula will be also obtained in the Appendix to the

present paper in the course of proof of Theorem 4.)

Theorem 3 describes a solution of equation (1) and respectively of equation (4) in the

zero deterministic approximation in the parameter 1/γ after the transitional process in
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time of order 1/γ. The purpose of the present paper is proof of a Theorem refining the

result of the part of Theorem 3 describing the slow motion. To this end, we construct

the next approximation of equation (4) with respect to the parameter 1/γ.

Thus, let us pass to approximate description of the generalized Kramers equation (4)

for large γ by means of systematic decomposition over powers of γ−1. The method used

here is similar to the method given in the book by van Kampen [5]. In this book, from the

Kramers equation describing the Brownian motion of a particle in the phase space, one

deduces the Fokker–Planck equation describing approximately the same process, but in

the form of the Brownian motion of the particle in configuration space after certain time

of transitional process. During this process the distribution with respect to momenta

becomes the Maxwell distribution.

Let us rewrite equation (4) in the following form:

B′ϕ =
1

γ

(
∂ϕ

∂t
− A′ϕ

)
. (32)

Let us look for solution of this equation in the form

ϕ = ϕ0 + γ−1ϕ1 + γ−2ϕ2 + ... (33)

Let us substitute expression (33) into equation (32), and write out the equations for

coefficients before equal powers of γ−1. We obtain:

for γ0 : B′ϕ0 = 0; (34)

for γ−1 : B′ϕ1 =
∂ϕ0

∂t
− A′ϕ0; (35)

for γ−2 : B′ϕ2 =
∂ϕ1

∂t
− A′ϕ1; . . . . (36)

Equation (34) implies that ϕ0 belongs to the subspace of eigenfunctions of the operator

B′ with eigenvalue 0, i. e. ϕ0 = P0ϕ0, where P0 is the projection operator onto the

eigenspace of the operator B′ with eigenvalue 0.

Let us apply to both parts of equality (35) the projection operator P0 from the left.

Taking into account equalities P0B
′ = 0 and ϕ0 = P0ϕ0, we obtain:

0 =
∂ϕ0

∂t
− P0A

′P0ϕ0, so
∂ϕ0

∂t
= P0A

′P0ϕ0. (37)

(Note that the operator P0A
′P0 corresponds to the Schrödinger operator H ′ in Theo-

rem 3.)

Provided equality (37) holds, equation (35) has a solution which we represent in the

form

ϕ1 = ϕ1,0 + f1, where P0f1 = 0, ϕ1,0 = P0ϕ1 = P0ϕ1,0,

f1 = B
′−1(P0A

′P0ϕ0 − A′P0ϕ0), (38)

and B
′−1 is the inverse operator to B′ on the subspace spanned by eigenfunctions of the

operator B′ with nonzero eigenvalues. Formula (6) for B′ implies that the operator B
′−1
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has the form

B
′−1 = −

∞∑
k=1

k−1Pk. (39)

This and the properties (7) of projection operators imply that P0B
′−1 = 0 and PkB

′−1 =
−k−1Pk.

By the equality B
′−1P0 = 0 the expression for f1 in formula (38) takes the form

f1 = −B′−1A′P0ϕ0. (40)

Let us substitute the expression ϕ1 = ϕ1,0 + f1 from formula (38) into equality (36), and

apply to both parts of equality (36) the projection operator P0 from the left. Using the

equalities P0B
′ = 0, P0f1 = 0, and ϕ1,0 = P0ϕ1,0, and equality (40), after the substitutions

mentioned above and opening the brackets we obtain:

0 = P0

(
∂ϕ1

∂t
− A′ϕ1

)
or

0 =
∂ϕ1,0

∂t
− P0A

′P0ϕ1,0 + P0A
′B

′−1A′P0ϕ0. (41)

Let us now sum up equations (37) and (41) multiplied respectively by 1 and γ−1. Then

for the function ϕ≤1,0, defined by the equality

ϕ≤1,0
def
= ϕ0 + γ−1ϕ1,0, (42)

we obtain the following equation up to summands of order γ−1:

0=
∂ϕ≤1,0
∂t

− P0A
′P0ϕ≤1,0 + γ−1P0A

′B
′−1A′P0ϕ≤1,0 +O[γ−2]. (43)

Respectively, for function ϕ≤1
def
= ϕ0 + γ−1ϕ1, which takes into account only first two

summands in the decomposition (33) for ϕ, using the equality ϕ1 = ϕ1,0+f1 in expression

(38) and substituting into it expression (40) for f1, we obtain the following equality up

to summands of order γ−1:

ϕ≤1 = ϕ≤1,0 − γ−1B
′−1A′P0ϕ≤1,0 +O[γ−2]. (44)

Since ϕ≤1,0 = P0ϕ≤1,0, that is, ϕ≤1,0 is an eigenfunction of the operator B′ with
eigenvalue 0, then, in accordance with formulas (14) and (15) and Theorem 2, this function

is completely determined by the function ψ
def
= S0̄[ϕ≤1,0] by the formula ϕ≤1,0 = I0̄[ψ],

where S0̄ and I0̄ are the operators defined by formulas (14) and (15). As above, let us

call the function ψ by the presentation of the eigenfunction ϕ≤1,0.
In order to obtain the ψ-presentation of equation (43), let us substitute into it, instead

of function ϕ≤1,0 the equal expression I0̄[ψ], let us act on both parts of equation by the

operator S0̄, and let us use the following equalities deduced from relations of Theorem 2:

P0ϕ≤1,0 = I0̄S0̄[ϕ≤1,0] = I0̄[ψ], S0̄P0 = S0̄, and ψ = S0̄I0̄[ψ].
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We obtain:

0 =
∂ψ

∂t
− S0̄A

′I0̄ψ + γ−1S0̄A
′B

′−1A′I0̄ψ +O[γ−2]. (45)

Respectively, expression (44) for function ϕ≤1[x′, p′], presented through the function

ψ[x′], without account of summands of order γ−2, reads

ϕ≤1 = I0̄[ψ]− γ−1B
′−1A′I0̄[ψ] +O[γ−2]. (46)

Note that this equality implies S0̄ϕ≤1 = ψ. Thus, expression (46) and the operator

S0̄ yield mutually inverse bijections between the set of functions ϕγ1[x
′, p′] and the set of

functions ψ[x′]. Thus, function ψ[x′] is also a presentation of the function ϕ≤1[x′, p′] by
formula (46). And the function ψ[x′] evolves in time according to equation (45).

Thus, from equation (45) and relation P0 = I0̄S0̄ of Theorem 2 we obtain the following

approximate equation, with account of summands up to order γ−1, for the slow subprocess

in the process described by the modified Kramers equation (4):

∂ψ

∂t
= S0̄A

′I0̄ψ − γ−1S0̄A
′B

′−1A′I0̄ψ +O[γ−2]. (47)

(The form of the first summand in the right hand side of the equation, namely, the

operator S0̄A
′I0̄, is known to us from Theorem 3.) The complete description of the right

hand side of this equation is given by the following Theorem.

Theorem 4. The slow motion mentioned in Theorem 3, starting from the wave

function ϕ0[x, p] of the form (28) with nonzero function ψ[y, 0], and parameterized by the

wave function ψ[y, t], satisfies the modified Schrödinger equation of the form i�∂ψ/∂t =

Ĥ1ψ, where action of the operator Ĥ1 is the following:

Ĥ1ψ=− �
2

2m

n∑
k=1

∂2ψ

∂y2k
+ V ψ − kBTn

2
ψ +

iγ−1

4

( n∑
j=1

�

m

∂2V

∂y2j
− (kBT )

2n

�

)
ψ +

+O[γ−2]. (48)

Proof of Theorem 4 is given in the Appendix.

Since for description of behavior of the system, only the differences between the

eigenvalues of the operator are essential, the constant summands in operators Ĥ and

Ĥ1 of Theorems 3 and 4 can be neglected.

Using the standard method of perturbation theory [9], let us compute the corrections

to the eigenvalues and eigenfunctions of the Hamilton operator for the operator Ĥ1.

Let E
(0)
n be the eigenvalues of the Hamilton operator Ĥ, and ψ

(0)
n be the corresponding

eigenfunctions. Let En and ψn be the eigenvalues and eigenfunctions of the operator

Ĥ1. Then by definition of eigenfunctions, one has the equalities Ĥψ
(0)
n = E

(0)
n ψ

(0)
n and

Ĥ1ψn = Enψn. Let us look for En and ψn in the form

En = E(0)
n + γ−1E(1)

n +O(γ−2) (49)

ψn = ψ(0)
n + γ−1

∑
k

k �=n

cnkψ
(0)
k +O(γ−2). (50)
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Let us substitute these expressions into equality (48). In the obtained expression, let us

equate coefficients before the corresponding powers of γ−1, and take the scalar products

of both parts of the obtained equalities with ψ
(0)
n or ψ

(0)
k . Using the orthonormality of

the system of eigenfunctions ψ
(0)
k with respect to the scalar product 〈 ; 〉 given by

〈ψk;ψm〉 =
∫
Rn

ψk[y]ψ
∗
m[y]dy, (51)

we obtain:

E(1)
n =

i�

4m
〈Δ2V ψ(0)

n ;ψ(0)
n 〉 (52)

cnk =
i�

4m

〈Δ2V ψ
(0)
n ;ψ

(0)
k 〉

E
(0)
n − E

(0)
k

, (53)

where Δ2V =
n∑

k=1

∂2V

∂y2k
. (54)

These equalities and the modified Schrödinger equation i�∂ψ/∂t = Ĥ1ψ imply that the

eigenfunction ψn evolves in time according to the following expression:

ψn[t] = ψn[0] exp

(
− iEnt

�

)
= ψn[0] exp

(
− iE

(0)
n t

�
− iγ−1E(1)

n t

�

)
,

where − iγ−1E(1)
n

�
=
γ−1

4m
〈Δ2V ψ(0)

n ;ψ(0)
n 〉 is real.

Therefore, the absolute value of the eigenfunction ψn changes in time exponentially with

the exponent (γ−1/4m)〈Δ2V ψ
(0)
n ;ψ

(0)
n 〉t. Thus, if the system at the initial moment of time

is in the state ψ[0], where ψ[0] =
∑∞

n anψn is a certain superposition of eigenstates of

the operator Ĥ1, then after the time t the system will be in the state ψ[t]/|ψ[t]|, where
ψ[t] =

∑∞
n anψn[t]. Since the absolute values of the eigenstates ψn[t] change exponentially

with different velocities, then after large enough time the state ψ[t]/|ψ[t]| will be close to
certain eigenstate ψk, for which the value −iE(1)

k is maximal among the values −iE(1)
n for

n with nonzero an in the sum
∑∞

n anψn. This phenomenon has been called decoherence

and has been studied in a series of papers [10, 11, 12]. The time of decoherence in our

model can be estimated as the time t for which akexp(−iE(1)
k t/�) >> ak1 exp(−iE(1)

k1
t/�),

where −iE(1)
k1

is the next value after the maximal value −iE(1)
k among the numbers −iE(1)

n

for n with nonzero an in the sum
∑∞

n anψn.

Besides that, formulas (50) and (53) imply that the eigenfunctions ψn of the operator

Ĥ1 are in general case not orthogonal to each other. We have:

〈ψn;ψk〉 = γ−1(cnk + c∗kn) +O[γ−2] = 2γ−1cnk +O[γ−2].

Let ϕn[x, p] and ϕk[x, p] be wave functions on the phase space corresponding to func-

tions ψn and ψk by formula (46). According to the assumptions of the model, the square

of the absolute value of the scalar product of normalized functions ϕn[x, p] and ϕk[x, p]

yields the probability to find the system in the state ψk, if it is in the state ψn. The latter

equality and formula (46) imply that this probability is nonzero if cnk �= 0.
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4. Conclusion

In this paper we have constructed an approximate description of the slow phase of the

scattering process of the wave function up to γ−1, where γ is the resistance of the medium

per unit of mass of a particle–wave. The obtained approximation is described by the

Schrödinger equation, supplemented with a summand with coefficient γ−1. In this ap-

proximation one has effects of decoherence and spontaneous jumps from one level to

another.

Note that for a free particle, when V = 0, and for harmonic oscillator, when the

second derivatives of the potential are constant, the summand of the operator Ĥ1 with

the factor γ−1 in Theorem 4 is a constant. Therefore, in the approximation up to γ−1,
due to this summand, in these cases all wave functions decrease in amplitude with the

same velocity, and dissipation is non-observable. Hence, to take into account dissipation

in this model either for free particle or for harmonic oscillator, one should consider the

summands with factors γ−2 and γ−3. Note also that the method of construction of the γ−1

summand in the modified Schrödinger equation used in this paper, allows, in principle,

to construct also the summands with factors γ−2 and γ−3.
The next phenomenon which can appear in this model, is the occurrence of nonzero

width of spectral lines. The interaction of a quantum particle with medium should

cause occurrence of width of energy levels for the energy operator. That is, if ψj is

an eigenfunction of the Hamilton operator with eigenvalue Ej, then the corresponding

wave function ϕj[x
′, p′] in the phase space is given by the formula (46). According to the

assumption of the model, the function ϕj[x
′, p′] defines the density function of probability

distribution in the phase space in the form ϕj[x
′, p′]ϕ∗j [x

′, p′]. Respectively, the average

value of the energy function H[x′, p′] in this case is given by the following expression:

Ej =

∫
R2n

H[x′, p′]ϕj[x
′, p′]ϕ∗j [x

′, p′]dx′dp′. (55)

Then (ΔEj)
2, the average of square of deviation from the average energy, is computed

by the formula

(ΔEj)
2 =

∫
R2n

(H[x′, p′]− Ej)
2ϕj[x

′, p′]ϕ∗j [x
′, p′]dx′dp′. (56)

These computations can be completed for concrete quantum systems, to obtain the

dependence of ΔEj on T and γ. After that, the obtained data can be compared with the

experimental data on the width of spectral lines.

Other directions of research on this subject can be found in [13].

Appendix. Proof of Theorem 4

To prove Theorem 4 one should compute the right hand side of equation (47), and pass

to the initial coordinates.
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The first summand in the right hand side of this equation reads as follows:

S0̄A
′I0̄ψ = −ikBT

�

(
−1

2

n∑
j=1

∂2

∂(x′j)2
+ V ′ − n

2

)
ψ.

We are going to compute the operator S0̄A
′B

′−1A′I0̄ which stands in equation (47) with

the factor γ−1.
Let us first transform this expression using the equality

B
′−1 = −

∞∑
k=1

k−1Pk

obtained above (39), the relations Pk =
∑

k1+...+kn=k Ik1,...,knSk1,...,kn from Theorem 2, and

PkP0 = 0 for k > 0 .

We obtain:

S0̄A
′B

′−1A′I0̄ =−
∞∑
k=1

k−1S0̄A
′PkA

′I0̄ =−
∞∑

k1,...,kn=0

k1+...+kn=k≥1

k−1S0̄A
′Ik1,...,knSk1,...,knA

′I0̄. (57)

Let us now compute the operator A′Ik1,...,kn , where the operator A
′ is given by expres-

sion (5), and the operator Ik1,...,kn is defined by expression (11).

We have

A′Ik1,...,knψ=
kBT

�

( n∑
j=1

(
∂V ′

∂x′j

∂

∂p′j
− p′j

∂

∂x′j

)
− i

(
V ′ −

n∑
j=1

p
′2
j

2

))
◦ (58)

1

(2π)3n/2
1

k1!
...

1

kn!

∫
R2n

ψ[x′′]Hk
k1...kn

[p′ − s′]e−
(p′−s′)2

2 eis
′(x′−x′′)ds′dx′′.

Let us put the summands of the operator A′ in this expression under the sign of

integral, and let us decompose the functions of (p′ − s′) under the sign of integral over

Hermite polynomials H l
l1...ln

[p′ − s′]. Using the equalities

∂

∂p′j

(
Hk

k1...kn
[p′ − s′]e−

(p′−s′)2
2

)
def
= −Hk+1

k1...kj+1...kn
[p′ − s′]e−

(p′−s′)2
2 , (59)

∂

∂x′j
eis

′(x′−x′′) = is′je
is′(x′−x′′), (60)

p
′2
j = ((p′j − s′j)

2 − 1) + 2p′js
′
j − s

′2
j + 1 = H2[p

′
j − s′j] + 2p′js

′
j − s

′2
j + 1, (61)

we obtain:

A′Ik1,...,knψ=
kBT

�

1

(2π)3n/2
1

k1!
...

1

kn!

∫
R2n

(
−

n∑
j=1

∂V ′

∂x′j
Hk+1

k1...kj+1...kn
[p′ − s′]

−i
n∑

j=1

p′js
′
jH

k
k1...kn

[p′ − s′]− iV ′[x′]Hk
k1...kn

[p′ − s′]

+
i

2

n∑
j=1

(H2[p
′
j − s′j] + 2p′js

′
j − s

′2
j + 1)Hk

k1...kn
[p′ − s′]

)

×ψ[x′′]e− (p′−s′)2
2 eis

′(x′−x′′)ds′dx′′. (62)
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After opening the brackets in the latter summand and summing up the terms similar to

the second summand, we obtain:

A′Ik1,...,knψ=
kBT

�

1

(2π)3n/2
1

k1!
...

1

kn!

∫
R2n

(
−

n∑
j=1

∂V ′

∂x′j
Hk+1

k1...kj+1...kn
[p′ − s′]

−iV ′[x′]Hk
k1...kn

[p′ − s′]+
i

2

n∑
j=1

H2[p
′
j − s′j]H

k
k1...kn

[p′ − s′]

− i
2

n∑
j=1

(s
′2
j − 1)Hk

k1...kn
[p′ − s′]

)
ψ[x′′]e−

(p′−s′)2
2 eis

′(x′−x′′)ds′dx′′. (63)

Lemma 1. The operators S0̄A
′Ik1,...,kn read as follows:

S0̄A
′I0̄[ψ] =

kBT

�

(
−iV ′ψ +

i

2

n∑
j=1

∂2ψ

∂x
′2
j

+
in

2
ψ

)
; (64)

S0̄A
′Ik1,...,kn [ψ] =

i

2

kBT

�
ψ, when k = k1 + ...+ kn = 2

and only one of k1, ..., kn equals 2; (65)

In the remaining cases S0̄A
′Ik1,...,kn = 0.

Proof. According to formula (14) the operator S0̄ is an integration over p. Hence for

proof of the formulas of Lemma 1 one should compute integral over p of expression (63)

for the operator A′Ik1,...,kn . To this end, let us use the orthogonality formula (24) for

Hermite polynomials and the fact that H0
0̄ = 1. This implies that integral over p of the

first summand of expression (63) equals 0. Integral of Hk
k1...kn

[p′−s′] in the second and the

fourth summand with respect to 1/(2π)(n/2) exp[−(p′ − s′)2/2]dp equals 1 only for k = 0,

and in the other cases also equals 0. Integral of H2[p
′
j − s′j]H

k
k1...kn

[p′ − s′] in the third

summand with respect to 1/(2π)(n/2) exp[−(p′−s′)2/2]dp differs from 0 and equals 2 only

when k = 2, kj = 2, and the rest of k1, ..., kn equal 0. Then in the obtained expression we

compute integrals over s′ and x′′, using the fact that integral of 1/(2π)neis
′(x′−x′′) over s′

is the delta function at the point x′, and integral of expression 1/(2π)ns′2eis
′(x′−x′′) over

s′ is the delta function at the point x′ with −∂2/∂x′′2. As a result of these computations

we get the statement of Lemma 1.

Since by Lemma 1 the operators S0̄A
′Ik1,...,kn with k = k1 + ... + kn > 0 are not

equal to 0 only when k = 2, kj = 2 (and therefore the remaining k1, ..., kn equal 0), then

for computation of operator S0̄A
′B

′−1A′I0̄ by formula (57) it remains to compute the

operators Sk1,...,knA
′I0̄ for the same values of k1, ..., kn.

Lemma 2. The operators Sk1,...,knA
′I0̄, in the case when kj = 2 and k1 + ...+ kn = 2,

read as follows:

Sk1,...,knA
′I0̄[ψ] =

kBT

�

(
−i∂

2V ′

∂x
′2
j

ψ + iψ

)
. (66)
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Proof. Under the conditions of Lemma 2, when k = kj = 2, the operator Sk1,...,kn

reads, by formula (10), as follows:

Sk1,...,kn [ϕ]
def
=

∫
Rn

Hk
k1...kn

[
p′ + i

∂

∂x′

]
ϕ[x′, p′]dp′

=

∫
Rn

H2

(
p′j + i

∂

∂x′j

)
ϕ[x′, p′]dp′. (67)

This and formula (63) for A′I0̄ imply that

Sk1,...,knA
′I0̄[ψ]=

kBT

�

1

(2π)3n/2

∫
R3n

H2

(
p′j + i

∂

∂x′j

)
◦

◦
(
−

n∑
j′=1

∂V ′[x′]
∂x′j′

H1[p
′
j′ − s′j′ ]− iV ′[x′]+

i

2

n∑
j′=1

H2[p
′
j′ − s′j′ ]

− i
2

n∑
j′=1

(s′2j′ − 1)

)
ψ[x′′]e−

(p′−s′)2
2 eis

′(x′−x′′)ds′dx′′dp′. (68)

Taking into account that by definition of Hermite polynomials we have

H2

(
p′j + i

∂

∂x′j

)
=

((
p′j + i

∂

∂x′j

)2

− 1

)
,

and by the equality i
∂

∂x′j
eis

′(x′−x′′) = −s′jeis
′(x′−x′′), we obtain:

Sk1,...,knA
′I0̄[ψ]=

kBT

�

1

(2π)3n/2

∫
R3n

H2

(
p′j − s′j

)

×
(
−

n∑
j′=1

∂V ′[x′]
∂x′j′

H1[p
′
j′ − s′j′ ]− iV ′[x′]+

i

2

n∑
j′=1

H2[p
′
j′ − s′j′ ]

− i
2

n∑
j′=1

(s′2j′ − 1)

)
ψ[x′′]e−

(p′−s′)2
2 eis

′(x′−x′′)ds′dx′′dp′ (69)

+
kBT

�

1

(2π)3n/2

∫
R3n

(
−2i(p′j − s′j)

n∑
j′=1

∂2V ′[x′]
∂x′j∂x

′
j′
H1[p

′
j′ − s′j′ ]

+
n∑

j′=1

∂3V ′[x′]
∂2x′j∂x

′
j′
H1[p

′
j′ − s′j′ ] + 2(p′j − s′j)

∂V ′[x′]
∂x′j

+ i
∂2V ′[x′]

∂x′j
2

)

×ψ[x′′]e− (p′−s′)2
2 eis

′(x′−x′′)ds′dx′′dp′. (70)

Further, let us integrate over p′ in each integral in the obtained expression, using the

orthogonality relation (24) for Hermite polynomials and the equalities 1 = H0(p
′
j − s′j)
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and (p′j − s′j) = H1(p
′
j − s′j). We obtain:

Sk1,...,knA
′I0̄[ψ] =

kBT

�

1

(2π)n

∫
R2n

(
−0− 0 +

i

2
2− 0

)
ψ[x′′]eis

′(x′−x′′)ds′dx′′

+
kBT

�

1

(2π)n

∫
R2n

(
−2i∂

2V ′[x′]

∂x′j
2 + 0 + 0 + i

∂2V ′[x′]

∂x′j
2

)
ψ[x′′]eis

′(x′−x′′)ds′dx′′. (71)

After computing the integrals over s′ and x′′ in the obtained expression and summing

up similar terms, we obtain the equality required in Lemma 2:

Sk1,...,knA
′I0̄[ψ] =

kBT

�

(
−i∂

2V ′[x′]
∂x

′2
j

ψ[x′] + iψ[x′]
)
. (72)

Now we are ready to compute S0̄A
′B

′−1A′I0̄ using Lemmas 1 and 2, by formula (57).

By Lemma 1 the summands in formula (57) can be nonzero only if kj = 2 for some

j ∈ {1, ..., n}, and the rest of k1, ..., kn equal 0. Lemmas 1 and 2 yield expressions for

operators S0̄A
′Ik1,...,kn and Sk1,...,knA

′I0̄ in this case. So, by formula (57) and Lemmas 1, 2

we have:

S0̄A
′B

′−1A′I0̄[ψ] = −
∞∑

k1,...,kn=0

k1+...+kn=k≥1

k−1S0̄A
′Ik1,...,knSk1,...,knA

′I0̄[ψ]

= −
∑

k1,...,kn∈{0;2}
k1+...+kn=2

2−1S0̄A
′Ik1,...,knSk1,...,knA

′I0̄[ψ]

= −
n∑

j=1

2−1
i

2

kBT

�

kBT

�

(
−i∂

2V ′

∂x
′2
j

ψ + iψ

)

= −1

4

(
kBT

�

)2( n∑
j=1

∂2V ′

∂x
′2
j

ψ − nψ

)
. (73)

If in this expression we return to the initial coordinates by formula (3), then we obtain

the equality

S0̄A
′B

′−1A′I0̄)[ψ] = −1

4

(
1

m

n∑
j=1

∂2V

∂x2j
−
(
kBT

�

)2

n

)
ψ. (74)

Thus, we have computed the operator in the second summand in equation (47). This

operator gives, after multiplying by −ihγ−1, the second summand in the operator Ĥ1

from Theorem 4.
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ph/0512078v2).

[11] Zurek W. H. Decoherence and the transition from quantum to classical - revisited.
arXiv:quant-ph/0306072v1, 2003. (An updated version of Physics Today, 44:36-44
(1991).)

[12] Menskij M. B. Dissipation and decoherence of quantum systems. Physics-Uspekhi
(Advances in Physical Sciences), 2003, vol.173, 1199-1219.

[13] Beniaminov E.M. Diffusion Scattering of Waves is a Model of Subquantum Level.
Electronic Journal of Theoretical Physics(EJTP) 11, No. 30, 35–48 (2014)
http://www.ejtp.com/articles/ejtpv11i30p35.pdf.




