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Abstract: In the paper, we discuss the studies of mathematical models of diffusion scattering of

waves in the phase space, and relation of these models with quantum mechanics. In the previous

works it is shown that in these models of classical scattering process of waves, the quantum

mechanical description arises as the asymptotics after a small time. In this respect, the proposed

models can be considered as examples in which the quantum descriptions arise as approximate

ones for certain hypothetical reality. The deviation between the proposed models and the

quantum ones can arise, for example, for processes with rapidly changing potential function.

Under its action the diffusion scattering process of waves will go out from the states described by

quantum mechanics. In the paper it is shown that the proposed models of diffusion scattering of

waves possess the property of gauge invariance. This implies that they are described similarly

in all inertial coordinate systems, i. e., they are invariant under the Galileo transformations.

We propose a program of further research.
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1. Introduction

Usually description of quantum systems is constructed by using formal quantization pro-

cedures, based on the classical description of the corresponding mechanical systems. The

search for the sense of these procedures attracted many physicists, starting with A. Ein-

stein.

The interest to this subject periodically decreased and revived again. In this direction,

one can mention the von Neumann theorem, proved during the period of formation of

∗ Email:ebeniamin@yandex.ru
† Tel.: +7(499) 250-61-18, Fax: +7(499) 250-51-09



36 Electronic Journal of Theoretical Physics 11, No. 30 (2014) 35–48

quantum mechanics, on impossibility of description of quantum mechanics by introduc-

ing hidden parameters [1]. Nevertheless, in the 50s, in the works of D. Bohm and L. de

Broglie [2], one proposed a model of quantum mechanics with hidden parameters, not

satisfying some conditions of the von Neumann theorem and possessing a strange prop-

erty of far-action. In the 60-s, in the work of E. Nelson [3], one proposed a probabilistic

approach given the name “stochastic quantization”. The subject of foundation of quan-

tum mechanics excited many specialists (for example, D. I. Blohintsev [4], V. P. Maslov

[5], K. Popper [6], etc.), and it was discussed in their publications. There are works in

which one makes a detailed analysis of the problem of introducing hidden parameters

into quantum mechanics. They include a widely known work of Bell [7] on introducing

hidden parameters and non-locality of quantum mechanics. An interesting analysis of

this work is given in [8]. The paper [9] contains a huge list of literature on foundations

of quantum mechanics, and provides a classification of these works. The history of the

discussion around the subject “foundation of quantum mechanics” and attitude to this

subject of “traditional physicists” are remarkably described in the book by K. Popper

[6].

The small popularity of alternative approaches to foundation of quantum mechanics

among the working physicists is usually related to the fact that they did not yet give seri-

ous new results. They also did not give more convenience in computations and heuristics.

However, recently the alternative approaches cause again an intent attention related to

the problems and possibilities of quantum optics, as well as the problem of construction

of quantum computers.

In the present paper we discuss the research on construction of models of diffusion

scattering of waves in phase space. I have been studying this subject during last years

[10-13]. In these models the quantum description of processes arises as an approximate

one, asymptotical for large values of certain coefficients of the model.

In the papers mentioned above one makes an attempt to construct a model of quantum

observables on the base of wave functions on the phase space. Note that in quantum

mechanics, the wave function depends either only on coordinates or only on momenta,

while in the present approach one considers wave functions depending both on coordinates

and on momenta. This model is based also on the following observation. In quantum

mechanics, the phase of the wave function of a particle (the natural hidden parameter)

changes in time even for stationary states with very high velocity (if one takes into account

the stationary energy). This velocity is such that a transfer of the particle with even small

(non-relativistic) velocities can cause considerable changes in the phase of wave function

because of the relativistic effect of more slow inner processes of a moving particle. Already

taking into account this effect leads to non-commutativity of the action of coordinate and

momentum shifts on the wave function. Note once again that in the proposed model one

considers wave functions on the phase (and not configuration) space, and one assumes

that the particle is in a diffusion process causing random shifts of the wave both by

coordinates and by momenta. It is shown that the classical model of scattering of the

wave, taking into account the assumptions described above, yields to arising quantum
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effects.

In the further sections of the present paper we speak in more detail on the obtained

results and directions of further research.

2. The results obtained earlier

In the paper [10] one introduces some assumptions on the process of observation of quan-

tum phenomena, including introduction of hidden parameters, action of the group of

motion in the region of hidden parameters, and averaging observations due to small ran-

dom (diffusion) motions of the observed object. By an observable we mean, as in classical

mechanics, an arbitrary integrable function f(x, p) on the phase space (x, p) ∈ R2n, where

x is the coordinate, p is the momentum. If ρ(x, p) is the density of probability distribu-

tion of the position of a particle in the phase space, then the mathematical expectation

(mean) f̄ of an observable f is given by the standard formula:

f̄ =

∫
R2n

f(x, p)ρ(x, p)dxdp.

Below it is assumed that in experiments, not all distributions ρ(x, p) are realized, but

only those of the form ρ(x, p) = |ϕ̃(x, p)|2, where ϕ̃(x, p) is a wave function averaged in

the diffusion process, given in the form of a complex valued function ϕ(x, p) on the phase

space. It is shown that the functions of the form ϕ̃(x, p), form a linear subspace H of

“stationary” (averaged) wave functions in the space of all square integrable functions on

R2n. Since |ϕ̃|2 = ϕ̃∗ϕ̃, where ϕ∗ is the complex conjugate function to the function ϕ, the

mean value of the observable f on averaged densities of probability distribution yields

the following quadratic form on the space of ϕ̃ ∈ H:

f̄ =

∫
R2n

f(x, p)ρ(x, p)dxdp =

∫
R2n

f(x, p)ϕ̃∗(x, p) ϕ̃(x, p)dxdp = 〈ϕ̃, Af ϕ̃〉,

where by Af we denote the linear operator on the space H giving this quadratic form.

The introduced operator Af is called the operator of the observable f . It is natural

that the spectrum of this linear operator corresponds to possible values of observations

for the observable f under the assumptions made.

In the paper [10] we have found the expression for this operator for any observable

(function of coordinates and momenta), depending on the ratio a/b of diffusion coeffi-

cients, with respect to coordinates a and momenta b, of the averaging process of wave

functions. It is shown that the usual linear operator of a quantum observable does not

coincide with the one constructed in the paper, but differs by smoothing of the potential

energy function with respect to the normal distribution with the normal deviation equal

to �a/2b, where � is the Planck constant. Assuming that this difference yields the shift

of the spectrum of the hydrogen atom observed in the Lamb experiment, we give an

estimate of the quantity a/b.
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A big advantage of the considered approach is also the possibility to express, for each

wave function of the system, the corresponding density of probability distribution in the

phase space ρ(x, p) = |ϕ̃(x, p)|2. For the first time this problem was solved by Wigner [14],

but he has constructed “quasidistributions” on the phase space which can be negative and

hence have no physical sense. And here we have a probability density distribution which

is the result of smoothing of Wigner’s “quasidistribution” with respect to the normal

distribution with the normal deviation equal to �a/2b. Smoothed Wigner’s distributions

were first considered by Husimi [15], but the sense of the smoothing parameters was

unclear.

At the end of the paper [10] we have posed the problems of generalization of the

results to the relativistically invariant case, taking into account the spin of the particles,

more general phase manifolds, and description of dynamics of observable quantities.

The papers [11-13] are devoted to solution of the latter problem.

In the papers [11, 12] (in [11] the results of [12] have been announced), continuing the

work [10], we consider the classical model of the diffusion process for a wave (complex

valued) function ϕ(x, p, t) on the phase space (x, p) ∈ R2n at the moment of time t.

It is assumed that the wave function ϕ(x, p, t) at the moment t satisfies the following

differential equation:

∂ϕ

∂t
=

n∑
k=1

(
∂H

∂xk

∂ϕ

∂pk
− ∂H

∂pk

∂ϕ

∂xk

)
− i

�

(
H −

n∑
k=1

∂H

∂pk
pk

)
ϕ+Δa,bϕ, (1)

where Δa,bϕ = a2
n∑

k=1

(
∂

∂xk

− ipk
�

)2

ϕ+ b2
n∑

k=1

∂2

∂p2k
ϕ+

abn

�
ϕ, (2)

where H(x, p) is the Hamilton function; a2 and b2 are the diffusion coefficients with

respect to coordinates and momenta respectively, and � is the Planck constant.

The analysis of this equation has shown (see [12], Theorems 4 and 5) that in this

model the motion splits into rapid and slow ones. After the rapid motion, at the time

of order �/(ab), starting from an arbitrary wave function on the phase space, the system

goes to a function belonging to certain special subspace of “stationary” wave functions for

the diffusion process. The elements of this subspace are parameterized by wave functions

depending only on coordinates. The slow motion takes place already in this subspace

and is described by the Schrodinger equation, in which in the right hand side we have

the operator coinciding with the usual quantum mechanics Hamilton operator up to

summands of order a�/b.

Thus, already in these papers it is shown that the quantum mechanical description of

processes can arise as the approximate description of the classical diffusion of waves in the

phase space. For the model considered in the paper, this approximation arises when the

Hamilton function has a small change with a change of coordinates, momenta and time

in intervals of length of order defined by the Planck constant and diffusion intensities.

Assuming the heat reason of the diffusions, in the paper we estimate the diffusion

coefficients and the transition time �/(ab) from the classical description of the process in
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which the Heisenberg indeterminacy principle in general does not hold, to the quantum

description in which the Heisenberg principle already holds. The transition time has

order 1/T · 10−11sec, where T is the temperature of the medium.

Another interesting result of the paper [11] is that the solution of equation (1) can be

represented as a path integral, but not with respect to the Feynman “measure” [16], whose

sense is mathematically not very much clear, but with respect to the probability measure

(analogous to the Wiener measure) for the Brownian motion given by the Fokker–Planck

equation of the form

∂f

∂t
=

n∑
k=1

(
∂H

∂xk

∂f

∂pk
− ∂H

∂pk

∂f

∂xk

+ a2
∂2f

∂x2
k

+ b2
∂2f

∂p2k

)
. (3)

Here f(x, p, t) is the probability density of the position of the Brownian particle in the

phase space at the moment of time t. In this case, the sense of the path integral can be

better substantiated.

Generalization of equation (1) to the relativistic case meets some difficulties, because

of the presence of diffusion with respect to coordinates in this model. Such diffusions

assume unbounded velocity in the diffusion jumps. Hence the next step in our investiga-

tions was construction of a model of scattering of waves in the phase space, in which the

diffusion takes place only with respect to momenta, because of the collision with particles

of the medium in the heat equilibrium.

In the paper [13], instead of equation (3) we consider the Kramers equation [17], [18]

of the form

∂f

∂t
=

n∑
j=1

(
∂V

∂xj

∂f

∂pj
− pj

m

∂f

∂xj

)
+ γ

n∑
j=1

∂

∂pj

(
pjf + kTm

∂f

∂pj

)
, (4)

where f(x, p, t) is the probability density of a particle in the phase space at the moment

of time t; m is the mass of the particle; V (x) is the potential function of external forces

acting on the particle; γ = β/m is the resistance coefficient of the medium in which the

particle moves, per unit of its mass; k is the Boltzmann constant; T is the temperature

of the medium.

Then, instead of equation (1) for the wave function ϕ(x, p, t), we consider the modified

Kramers equation of the form
∂ϕ

∂t
= Aϕ+ γBϕ, (5)

where Aϕ =
n∑

j=1

(
∂V

∂xj

∂ϕ

∂pj
− pj

m

∂ϕ

∂xj

)
− i

�

(
mc2 + V −

n∑
j=1

p2j
2m

)
ϕ (6)

and Bϕ =
n∑

j=1

∂

∂pj

((
pj + i�

∂

∂xj

)
ϕ+ kTm

∂ϕ

∂pj

)
.

Equation (5) is obtained from the Kramers equation (4) by adding to the right hand side

of the summand of the form −i/�(mc2 + V − p2/(2m))ϕ, and the replacement, in the
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diffusion operator, of multiplication of the function ϕ by pj by the action of the operator

(pj + i�∂/∂xj) on the function ϕ.

Adding the summand −i/�(mc2+V −p2/(2m))ϕ is related with the additional phys-

ical requirement that the wave function at the point (x, p) oscillates harmonically with

frequency 1/�(mc2 + V − p2/(2m)) in time.

The requirement of harmonic oscillating of the wave function ϕ at the point (x, p)

with the large frequency 1/�(mc2 + V − p2/(2m)), in the case when mc2 is much greater

than V, leads to the fact that the shift of the wave function with respect to the coordinate

xj with conservation of the proper time at the point (x, p) yields the phase shift in the

oscillation of the function ϕ. And the operator of infinitely small shift ∂/∂xj is changed

by the operator ∂/∂xj − ipj/�. (For a more detailed explanation, see [12].) Respectively,

if we multiply this operator by i�, then we obtain the operator pj + i�∂/∂xj, used in the

modified diffusion operator B.

For equation (5), in [13] we obtain results similar to that of the paper [12]. It is shown

that also in this case, the process described by equation (5), for large γ = β/m passes

several stages. During the first rapid stage, the wave function goes to a “stationary” state

of the same form as for equation (5). At the second, slow stage, the wave function evolves

in the subspace of “stationary” states subject to the Schrodinger equation. Besides that,

it is shown that at the third stage, the dissipation of the process leads to decoherence

of the wave function, and any superposition of states comes to one of eigenstates of the

Hamilton operator.

In the paper [13], it is shown also that if, on the contrary, the medium resistance per

unit of mass of the particle γ = β/m is small, and in equation (5) one can neglect the

summand with the factor γ, then in the considered model, the density of the probability

distribution ρ = |ϕ|2 satisfies the standard Liouville equation

∂ρ

∂t
=

n∑
j=1

(
∂V

∂xj

∂ρ

∂pj
− pj

m

∂ρ

∂xj

)
, (7)

as in classical statistical mechanics.

3. Gauge Transformations

In this section we introduce and discuss the notion of gauge invariance for equation (5).

According to the approach exposed in [13], the density of probability distribution

ρ(x, p, t) of a quantum particle whose state at the moment of time t is given by the wave

function ϕ(x, p, t), is proportional to |ϕ|2 = ϕ(x, p, t)ϕ∗(x, p, t). This implies that the

replacement of a wave function ϕ by the wave function of the form exp(ig/�)ϕ, where

g = g(x, p, t) is an arbitrary real valued function, does not change the density of the

probability distribution ρ(x, p, t). Such a transform of wave function is usually called a

gauge transform.

Let us look how equation (5) changes under this gauge transform. To this end, let

us write out equation (5) in a more general form. Let us write in it, instead of the
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differentiation operators ∂/∂pj of the function ϕ, the operator Dp
j = ∂/∂pj + iBj/�,

instead of the operators ∂/∂xj − ipj/�, the operator Dx
j = ∂/∂xj + iAj/�, and instead

of the operator ∂/∂t + iH/�, where H = mc2 + p2/(2m) + V , let us write the operator

Dx
0 = ∂/∂t+ iA0/�, where Aj, A0, Bj are functions of x, p, and t for j = 1, ..., n. In these

notations, equation (5) will take the form

Dx
0ϕ =

n∑
j=1

(
∂H

∂xj

Dp
jϕ−

∂H

∂pj
Dx

jϕ

)
+ γ

n∑
j=1

Dp
j

(
i�Dx

jϕ+ kTmDp
jϕ

)
. (8)

By a gauge transform of equation (8) we call the following transform of the function

ϕ and the potentials Aj, A0, Bj, for j = 1, ..., n:

ϕ �−→ ϕ′ = exp(− i

�
g)ϕ; (9)

A0 �−→ A′0 = A0 +
∂g

∂t
;

Aj �−→ A′j = Aj +
∂g

∂xj

, where j = 1, ..., n;

Bj �−→ B′j = Bj +
∂g

∂pj
, where j = 1, ..., n. (10)

It is not difficult to see that after the substitution (9) into equation (8), replacement

(10), and dividing both parts of the obtained equality by exp(−(i/�)g), the form of

equation (8) will not change.

Geometrically, gauge transformation corresponds to transfer to another trivialization

of a complex line bundle over the phase space, in which a form of linear connection is

chosen, defining parallel transport of the vectors of the bundle along trajectories in the

phase space.

In the particular case for equation (5), the potentials read

A0 = H(x, p) = E + V ; Aj = −pj; Bj = 0 for j = 1, ..., n.

Understanding the physical sense of the potentials in the general case for equation (8),

requires separate investigation. For the Dirac equation, potentials of gauge invariance are

usually related with the potentials of electromagnetic field.

4. The Galileo Invariance

In this section we study the change of equation (5) under the transfer to a coordinate

system moving uniformly with respect to the initial coordinate system, with the velocity

u. The diffusion equation (4) is not invariant with respect to Galileo transforms under

transfer to new inertial coordinate system moving with constant velocity u with respect

to the old one.

The aim of this section is to study invariance of equation (5) for a free particle (V = 0)

with respect to Galileo transforms, with gauge transforms of the wave function.
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By definition of Galileo transforms, the new coordinate system is expressed through

the old one by the following formulas:

t′ = t; x′ = x− ut; p′ = p−mu;

E ′ =
p′2

2m
=

(p−mu)2

2m
=

p2

2m
− pu+

mu2

2
= E − pu+

mu2

2
. (11)

Respectively, the old coordinates are expressed through the new ones by the following

formulas:

t = t′; x = x′ + ut; p = p′ +mu;

E =
p2

2m
=

(p′ +mu)2

2m
=

p′2

2m
+ p′u+

mu2

2
= E ′ + p′u+

mu2

2
. (12)

Substituting these expressions into equation (5), with the use of relations (6) and (7),

we obtain:

∂ϕ

∂t′
−

n∑
j=1

∂ϕ

∂x′j
uj =

n∑
j=1

(
∂V

∂x′j

∂ϕ

∂p′j
− p′j +muj

m

(
∂

∂x′j
− i

p′j +muj

�

)
ϕ

)

− i

�

(
E ′ + p′u+

mu2

2
+ V

)
ϕ

+γ
n∑

j=1

∂

∂p′j

((
p′j +muj + i�

∂

∂x′j

)
ϕ+ kTm

∂ϕ

∂p′j

)
,

whence, after simple algebraic transformations, we obtain:

∂ϕ

∂t′
=

n∑
j=1

(
∂V

∂x′j

∂ϕ

∂p′j
− p′j

m

(
∂

∂x′j
− i

p′j +muj

�

)
ϕ

)

− i

�

(
E ′ − mu2

2
+ V

)
ϕ

+γ

n∑
j=1

∂

∂p′j

((
p′j +muj + i�

∂

∂x′j

)
ϕ+ kTm

∂ϕ

∂p′j

)
.

If in the obtained equation one makes the substitution ϕ = exp((i/�)g)ϕ′, where
g = mux′ +mu2t′/2, then (after the gauge transform) we obtain the equation

∂ϕ′

∂t′
=

n∑
j=1

(
∂V

∂x′j

∂ϕ′

∂p′j
− p′j

m

(
∂

∂x′j
− i

p′j
�

)
ϕ′
)

− i

�
(E ′ + V )ϕ′

+γ

n∑
j=1

∂

∂p′j

((
p′j + i�

∂

∂x′j

)
ϕ′ + kTm

∂ϕ′

∂p′j

)
,

which coincides with equation (5). Thus, we have proved the Galileo invariance of equa-

tion (5).
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5. Program of Further Research

In this section we list directions of further research and sketch approaches to the stated

problems.

5.1 Comparison of the model of scattering of waves with the quantum

model

In order to compare exactness of the model described by equation (5), with the standard

quantum mechanical model, one should find the situation in which these models give

essentially different results. Such a situation can arise, for example, if one considers the

process with the rapidly changing in time potential function V (x, t). Such a potential can

prevent a wave function of equation (5) from transfer, during the time of the transition

process, to the “stationary” one. As a result, a solution of equation (5) can differ from a

solution of the Schrodinger equation.

In order to check this, consider, for example, the potential function V = V0(x) +

V1(x) cos(ωt) for ω −→∞.

Mechanical and quantum mechanical systems with such potential were studied in

many papers, for example, [19-25]. The physical problem in which such a quantum

model arises, is a charged particle in external force field and in a laser row.

Equation (5) with this potential reads

∂ϕ

∂t
= Aϕ+ γBϕ, (13)

where

Aϕ =
n∑

j=1

(
∂(V0 + V1 cos(ωt))

∂xj

∂ϕ

∂pj
− pj

m

∂ϕ

∂xj

)

− i

�

(
mc2 + V0 + V1 cos(ωt)−

n∑
j=1

p2j
2m

)
ϕ, (14)

and Bϕ =
n∑

j=1

∂

∂pj

((
pj + i�

∂

∂xj

)
ϕ+ kTm

∂ϕ

∂pj

)
.

One should study solutions of this equation for large ω and compare these solutions

with solutions of the quantum system.

5.2 The study of the scattering process of mixed waves and computation

of the time of the transition process to stationary mixed state of heat

equilibrium

Another problem which one would like to study is the behavior of the process for mixed

waves of the form ϕ(x, p, t, ξ), where ξ ∈ D is an additional parameter, and the distribu-

tion ρ(x, p, t) in the phase space at the moment t for a particle whose state is described
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by a wave function ϕ(x, p, t, ξ), is proportional to the function
∫
D
|ϕ(x, p, t, ξ)|2dξ, i. e.

ρ(x, p, t) =

∫
D
ϕ(x, p, t, ξ)ϕ∗(x, p, t, ξ)dξ∫

R2n

∫
D
ϕ(x, p, t, ξ)ϕ∗(x, p, t, ξ)dξdxdp

.

Also here one assumes that the evolution of the wave function in time goes according to

equation (5) for each fixed ξ ∈ D.

Another equivalent way to describe this process, familiar in quantum mechanics, is

to consider self-adjoint operators ρ̂ on functions on the phase space R2n with the kernel

of the operator of the form ρ̂(x, p; x′, p′, t) =
∫
D
ϕ(x, p, t, ξ)ϕ∗(x′, p′, t, ξ)dξ. Note that

any positive self-adjoint operator ρ̂ on the space of functions can be reduced to diagonal

form and therefore to the form above. Positive self-adjoint operators with trace unity

are called operators of density of states. Then the density of probability distribution

ρ(x, p, t) = ρ̂(x, p; x, p, t)/Trρ̂, where

Trρ̂ =

∫
R2n

ρ̂(x, p; x, p, t)dxdp

is the trace of the operator ρ̂. The evolution of the operator of density of state ρ̂ in time

is given by the equation

∂ρ̂

∂t
= Dρ̂+ ρ̂D∗ − ρ̂Tr(Dρ̂+ ρ̂D∗),

where D is the operator expressed by the right hand side of equation (5), and D∗ is the
adjoint operator. Expression with the trace Tr stands in this equation in order to make

the trace of operator of density of state ρ̂ equal to one at each moment of time.

This is a nonlinear equation. One should investigate whether it has a unique stationary

state, determine the form of this stationary state (the state of heat equilibrium), and

estimate the time of transition process to this stationary state.

5.3 Generalization of the model with account of spin of a particle and

the requirement of relativistic invariance

Let M = R4 be the Minkowsky space-time, P = R3 be the space of momenta, and

B = M × P be the phase space-time, on which the Lorentz group naturally acts (if

one fixes the stationary mass m of the particle). The same space has an action of the

commutative group of coordinate shifts preserving the proper time at each point of the

phase space, and of the one-parameter group of shifts of proper time at each point of

the phase space. Together these groups define an action of the Poincare group P on the

space B.

In this new model, we propose to consider the values of the wave function ϕ not in

the field of complex numbers C, but in certain Euclidean vector space F over the field

of complex numbers, with an action by unitary linear operators of the group SU(2, C),

the two-fold covering of the rotation group SO(3) of three-dimensional space, acting on
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the phase space R6. The probability distribution ρ(x, p, t) of position of a particle in the

phase space at the moment of time t is again assumed to be proportional to |ϕ(x, p, t)|2.
The group SU(2, C) is a subgroup in the group SL(2, C), where SL(2, C) is the group

of two-dimensional complex matrices with determinant equal to 1. The group SL(2, C)

is the two-fold covering of the Lorentz group L. Thus, we have a commutative diagram

of homomorphisms of groups:

SU(2, C) ⊂ SL(2, C) ⊂ P̂

↓ j ↓ j ↓ j
SO(3) ⊂ L ⊂ P,

where P̂ is the two-fold covering group for the Poincare group.

Further one considers the bundle pr : F ×B → B with fiber F over the phase space-

time B. The Poincare group P acts on the base B. The action of its subgroup SO(3) ⊂ L

on B by rotations with respect to the coordinate origin lifts to the compatible action of

the group SU(2, C) in the fiber F over the origin point in B. Then, this action can be

uniquely extended to an action of the group P̂ on the bundle F × B, compatible with

the action of the group P on the base B. The compatibility of the actions of the groups

on the bundle means that for any g ∈ P̂ , the following diagram is commutative:

F × B
g−→ F × B

↓ pr ↓ pr
B

j(g)−→ B.

Here also, if g ∈ SU(2, C) ⊂ P̂ , then the diagram

F × 0̄ ⊂ F × B

↓ g ↓ g
F × 0̄ ⊂ F × B.

is commutative.

The uniqueness of the lift of the action of the Poincare group from B to the action

of the group P̂ on the bundle F ×B is understood up to a choice of trivialization of this

bundle.

If a, b ∈ B are two points of the base (the phase space-time), then one uniquely defines

an element ha,b ∈ P of the Poincare group, of the parallel transport of the coordinate

system from the point a to the point b. The action of the element ha,b lifts uniquely to

the action of an element ĥa,b ∈ P̂ on the bundle F ×B. This action transfers elements of

the fiber F over a to elements of the fiber over b. Let us call this action by the parallel

transport of elements of the fiber along the vector 	ab. Further, this definition allows us

to define the parallel transport in the bundle F ×B along any curve in the base.
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In the considered model, the wave function ϕ at the moment of time t is given by a

function on the phase space of the form ϕ : R6 → F . The evolution of the wave function

in time is defined by the condition that it is simultaneously in several motions:

1) The vector ϕ(x, p) ∈ F is parallel transported along the trajectory in the phase

space; the trajectory is defined by a random Brownian process according to certain dif-

fusion equation, for example, the Kramers equation.

2) The vector ϕ at each point (x, p), in the coordinate system related to this point,

rotates with the constant angular velocity ω = mc2/� in the fiber F over this point in

the proper time related to this point; the direction of the rotation axis Jx,p ∈ su(2, C),

in the stationary (laboratory) coordinate system, transforms from one point to another

in the same way as the direction of the angular momentum.

The value of the wave function at the point (x, p) at the moment (t+�t) is defined

by the mean value of the vectors ϕ over all trajectories ending at the point (x, p) of the

phase space at the moment (t+�t).

One should construct the differential equation corresponding to this model, and study

it.

5.4 Scattering of waves on the phase space and interaction with electro-

magnetic field

This problem is related to introducing interaction with electromagnetic field into the

model. Such introducing could be made by analogy to its introducing into the Dirac

equation. As it was shown in equation (8), on this way potentials arise depending also

on the momentum, in contrast with the vector potential of the electromagnetic field

which depends only on coordinates and time. Determining the sense of vector potentials

depending on momenta, also requires a separate investigation.

Acknowledgements

I am grateful to professor A. V. Stoyanovsky, who translated this paper to English.

References

[1] Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Berlin: Springer -
Verlag (1932)

[2] Bohm, D., Vigier, J. P.: Model of the Causal Interpretation of Quantum Theory in
Terms of a Fluid with Irregular Fluctuations. Phys.Rev. 96, 208-216 (1954)

[3] Nelson, E.: Derivation of the Schrodinger Equation from Newtonian Mechanics. Phys.
Rev. 150, 1079 –1085 (1966)

[4] Blokhintsev, D. I.: The Philosophy of Quantum Mechanics.Springer (1968)



Electronic Journal of Theoretical Physics 11, No. 30 (2014) 35–48 47

[5] Maslov, V. P.: Kolmogorov–Feller equations and the probabilistic model of quantum
mechanics. Itogi Nauki Tekh., Ser.: Teor. Veroyatn. Mat. Statist. Kibernet. 19, 5585
(1982) (in Russian)

[6] Popper, K.: Quantum theory and the schism in physics. London Hutchison (1982)

[7] Bell, J.S.: Introduction to the Hidden-Variable Question. In: d’Espagnat , B. (ed.)
Foundation of Quantum Mechanics, pp.171–181. Academic, N.Y. (1971)

[8] Kchrennikov, A. Yu.: The EPR–Bohm experiment and the Bell inequality: quantum
physics and probability theory. Theor. Math. Phys. 157, 99–115 (2008)

[9] Cabello, A.: Bibliographic guide to the foundations of quantum mechanics and
quantum information. http://arxiv.org/abs/quant-ph/0012089v12 (2004)

[10] Beniaminov, E.M.: A Method for Justification of
the View of Observables in Quantum Mechanics and Probability Distributions in
Phase Space. http://arxiv.org/abs/quant-ph/0106112 (2001)

[11] Beniaminov, E.M.: Diffusion processes in phase spaces and quantum mechanics.
Doklady Mathematics (Proceedings of the Russian Academy of Sciences) 76, 771–
774 (2007)

[12] Beniaminov, E.M.: Quantization as asymptotics of a diffusion process in phase
space. Proc. Intern. Geom. Center 2(4), 7-50 (2009) (in Russian; English translation:
http://arXiv.org/abs/0812.5116v1)

[13] Beniaminov, E.M.: Quantum Mechanics as Asymptotics of Solutions of Generalized
Kramers Equation. Electronic Journal of Theoretical Physics (EJTP) 8, No. 25 195-
210 (2011)

[14] Wigner, E.: On the Quantum Correction For Thermodynamic Equilibrium. Phys.
Rev. 40, 749-759 (1932)

[15] Husimi, K.: Some Formal Properties of the Density Matrix. Proc. Phys. Math. Soc.
Jpn. 22, 264-314 (1940)

[16] Feynman, R., Hibbs, A.: Quantum mechanics and path integrals, New York:
McGraw-Hill (1965)

[17] Kramers, H. A.: Brownian motion in a field of force and the diffusion model of
chemical reactions. Physica. 7, 284304. (1940)

[18] Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North Holland,
Amsterdam (1981)

[19] Kapitza, P. L.: The dynamic stability of a pendulum for an oscillating point of
suspension. Zh. Eksp. Teor. Fiz. 21, 5, 588-597 (1951)

[20] Landau, L. D., Lifshitz, E. M.: Mechanics. pp. 93 – 95. Pergamon, Oxford (1960)

[21] Cook, R. J., Shankland, D. G., Wells, A. L.: Quantum theory of particle motion in
a rapidly oscillating field. Phys. Rev. A 31, 564–567 (1985)
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