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Abstract: We consider the process of diffusion scattering of a wave function given on the

phase space. In this process the heat diffusion is considered only along momenta. We write

down the modified Kramers equation describing this situation. In this model, the usual quantum

description arises as asymptotics of this process for large values of resistance of the medium per

unit of mass of particle. It is shown that in this case the process passes several stages. During the

first short stage, the wave function goes to one of “stationary” values. At the second long stage,

the wave function varies in the subspace of “stationary” states according to the Schrodinger

equation. Further, dissipation of the process leads to decoherence, and any superposition of

states goes to one of eigenstates of the Hamilton operator. At the last stage, the mixed state

of heat equilibrium (the Gibbs state) arises due to the heat influence of the medium and the

random transitions among the eigenstates of the Hamilton operator. Besides that, it is shown

that, on the contrary, if the resistance of the medium per unit of mass of particle is small, then

in the considered model, the density of distribution of probability ρ = |φ|2 satisfies the standard
Liouville equation, as in classical statistical mechanics.
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1. Description and Some Properties of the Model

As in [2], we consider certain mathematical model of a process whose state at each moment

of time is given by a wave function, which is a complex valued function φ(x, p), where

(x, p) ∈ R2n, on the phase space, and n is the dimension of the configuration space. In

contrast to quantum mechanics, where the wave function depends only on coordinates

or only on momenta, in our case the wave function depends both on coordinates and on

momenta. By analogy with quantum mechanics, it is assumed that wave functions obey
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the superposition principle, and the density of probability ρD(x, p) in a bounded domain

of the phase space (x, p) ∈ D ⊂ R2n, corresponding to the wave function φ(x, p), is given

by the standard formula

ρD(x, p) = |φ(x, p)|2/
∫
D

|φ(x, p)|2dxdp. (1)

In quantum mechanics, the time evolution of the wave function can be defined by the

Feynman path integral [3]. The Feynman principle assumes that if at the initial moment

t = t0 a wave function φ(x0, p0, t0) is given, then the value of the wave function at the point

(x, p) at the moment t = t1 is defined by the integral over all paths {x(t), p(t)} joining

the points (x0, p0, t0) and (x, p, t1), of the quantity exp
(
− i

~

∫ t1
t0
[V (x(t))− p2(t)/(2m)]dt

)
,

where ~ is the Planck constant, with respect to certain “measure” on paths defined by

Feynman.

In contrast to Feynman’s assumption, in the present paper we study the model in

which the Feynman measure on paths is replaced by the probability measure of the

diffusion process (the heat Brownian motion) given by the Kramers equation [4], [5]:

∂f

∂t
=

n∑
j=1

(
∂V

∂xj

∂f

∂pj
− pj
m

∂f

∂xj

)
+ γ

n∑
j=1

∂

∂pj

(
pjf + kTm

∂f

∂pj

)
, (2)

where f(x, p, t) is the density of probability distribution of the particle in the phase space

at the moment of time t; m is the mass of the particle; V (x) is the potential function

of the external forces acting on the particle; γ = β/m is the resistance coefficient of

the medium per unit of mass; k is the Boltzmann constant; T is the temperature of the

medium.

This is the classical Kramers equation describing the diffusion motion of a particle in

the phase space under action of external forces defined by the potential function V (x),

the heat medium with temperature T , and the medium resistance per unit of mass γ.

Consider the following modified Kramers equation for the wave function φ(x, p, t):

∂φ

∂t
= Aφ+ γBφ, (3)

where Aφ =
n∑

j=1

(
∂V

∂xj

∂φ

∂pj
− pj
m

∂φ

∂xj

)
− i

~

(
mc2 + V −

n∑
j=1

p2j
2m

)
φ (4)

Bφ =
n∑

j=1

∂

∂pj

((
pj + i~

∂

∂xj

)
φ+ kTm

∂φ

∂pj

)
.

Equation (3) is obtained from the Kramers equation (2) by adding to the right hand side

the summand of the form −i/~(mc2 + V − p2/(2m))φ and by replacing multiplication of

the function φ by pj in the diffusion operator by the action of the operator (pj+ i~∂/∂xj)
on the function φ.

Adding the summand−i/~(mc2+V−p2/(2m))φ is related with the additional physical

requirement that the wave function at the point (x, p) oscillates harmonically with the

frequency 1/~(mc2 + V − p2/(2m)) in time.
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The requirement of harmonic oscillation of the wave function φ at the point (x, p)

with large frequency 1/~(mc2 + V − p2/(2m)), in the case when mc2 is much greater

than V , gives that the shift of the wave function with respect to coordinate xj with

conservation of the proper time at the point (x, p) yields the phase shift in the oscillation

of the function φ. This also gives that the operator of infinitesimal shift ∂/∂xj is replaced

by the operator ∂/∂xj − ipj/~. (For a more detailed explanation, see [2].) Respectively,

if one multiplies this operator by i~, then one obtains the operator pj + i~∂/∂xj used in

the modified diffusion operator B.

Let us proceed to the study of equation (3).

In order to separate mathematics from physics in this equation, let us make a change

of variables and let us pass to dimensionless quantities:

t′ = γt, p′ =
p√
kTm

, x′ =

√
kTm

~
x, V ′(x) =

V (x)

kT
. (5)

In the new variables equation (3) takes the following form:

∂φ

∂t′
=
kT

γ~
A′φ+B′φ, (6)

where A′φ =
n∑

j=1

(
∂V ′

∂x′j

∂φ

∂p′j
− p′j

∂φ

∂x′j

)
− i

(
mc2

kT
+ V ′ −

n∑
j=1

(p′j)
2

2

)
φ (7)

B′φ =
n∑

j=1

∂

∂p′j

((
p′j + i

∂

∂x′j

)
φ+

∂φ

∂p′j

)
.

The parameter of the model described by equation (6), is the dimensionless quantity

kT/(γ~), which we denote by ε.

Let us assume that ε = kT/(γ~) is a small quantity which is the small perturbation

parameter in equation (6) with the non-perturbed equation ∂φ/∂t′ = B′φ, i. e., the

equation
∂φ

∂t′
=

n∑
j=1

∂

∂p′j

((
p′j + i

∂

∂x′j

)
φ+

∂φ

∂p′j

)
. (8)

Note that the smallness of the quantity ε = kT/(γ~) requires that the friction coefficient

of the medium per unit of mass γ = β/m = (k/~)T/ε = 1.3 · 1011T/ε be greater than

1.3 · 1011T , since k/~ = 1.3 · 1011.
Let us substitute into equation (8) the Fourier integral presentation of φ(x′, p′, t′) with

respect to x′:

φ(x′, p′, t′) =
1

(2π)n/2

∫
Rn

φ̃(s′, p′, t′)eis
′x′
ds′, (9)

where φ̃(s′, p′, t′) =
1

(2π)n/2

∫
Rn

φ(x′, p′, t′)e−is′x′
dx′. (10)

We obtain that φ̃(s′, p′, t′) satisfies the equation

∂φ̃

∂t′
=

n∑
j=1

∂

∂p′j

(
(p′j − s′j)φ̃+

∂φ̃

∂p′j

)
. (11)
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The operator of the right hand side of this equation is well known (see, for example,

[6]). This operator has a full set of eigenfunctions in the space of functions tending to

zero as |p′| tends to infinity. The eigenvalues of this operator are nonpositive integers.

The eigenfunctions corresponding to the eigenvalue 0 have the form

φ̃0(s
′, p′) =

1

(2π)n/2
ψ̃(s′)e−

(p′−s′)2
2 ,

where ψ̃(s′) is an arbitrary complex valued function of s′ ∈ Rn .

The rest of eigenfunctions are obtained as derivatives of the functions φ̃0(s
′, p′) with

respect to p′, and have eigenvalues −1,−2, ..., respectively, depending on the degree of

derivative, and the projector P0 to the subspace of eigenfunctions with eigenvalue 0 has

the form

φ̃0(s
′, p′) = P0φ̃ =

1

(2π)n/2
ψ̃(s′)e−

(p′−s′)2
2 , where ψ̃(s′) =

∫
Rn

φ̃(s′, p′)dp′. (12)

Hence, considering equation (11) in the basis of these eigenfunctions, we obtain that each

solution φ̃(s′, p′, t′) of this equation tends exponentially in time with exponent −1 to a

stationary solution of the form φ̃0. Therefore, taking into account the presentation (9) of

the function φ(x′, p′, t) via φ̃(s′, p′, t′), we obtain that “stationary” solutions φ0(x
′, p′) of

equation (6) look as follows:

φ0(x
′, p′) =

1

(2π)n

∫
Rn

ψ̃(s′)e−
(p′−s′)2

2 eis
′x′
ds′.

Let us present the function ψ̃(s′), in its turn, as the Fourier integral:

ψ̃(s′) =
1

(2π)n/2

∫
Rn

ψ(y′)e−is′y′dy′.

Substituting this presentation into the preceding expression and integrating over s′, we

obtain

φ0(x
′, p′) =

1

(2π)3n/2

∫
R2n

ψ(y′)e−
(p′−s′)2

2 eis
′(x′−y′)ds′ dy′

=
1

(2π)n

∫
Rn

ψ(y′)e−
(x′−y′)2

2 eip
′(x′−y′)dy′

or, taking into account (12),

φ0 = P0φ =
1

(2π)n

∫
Rn

ψ(y′)e−
(x′−y′)2

2 eip
′(x′−y′)dy′, where ψ(y′) =

∫
Rn

φ(y′, p′)dp′. (13)

Thus, if ε is small, then at the time t′ of order 1, a solution of equation (6), starting

from an arbitrary function φ, will become close to a function of the form φ0 which, in

the initial coordinates (5), reads:

φ0(x, p) =
1

(2π~)n

∫
Rn

ψ(y) exp

(
−kTm(x− y)2

2~2

)
exp

(
ip(x− y)

~

)
dy.
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Later the solution of equation (3), evolving in time, will be close to the subspace of

“stationary” functions of the form φ0.

Note that the “stationary” functions obtained here coincide, up to a normalizing

factor, with the “stationary” functions of Theorem 1 obtained in the work [2], if one

puts kTm/~ equal to b/a, where a2 and b2 are the diffusion coefficients with respect to

coordinates and momenta in the model considered in [2]. Hence some results obtained in

[1], [2], hold true also in our case. We shall cite them without proof.

The results are obtained by the perturbation theory method up to second order, of

equation (6) ∂φ/∂t = εA′φ+B′φ for ε≪ 1, where A′ is a skew Hermitian operator and

B′ is an operator with nonpositive discrete spectrum.

Note that this equation does not preserve the norm of the function φ, which we

normalize to obtain the distribution ρ(x, p). The corresponding equation preserving the

norm, which we actually study, reads ∂φ/∂t = εA′φ+B′φ+kφ, where k = −(⟨B′φ, φ⟩+
⟨φ,B′φ⟩)/(2⟨φ, φ⟩), but it is nonlinear.

2. The main results

Denote by H(x, p) = p2/(2m) + V (x) +mc2 the Hamilton function of the system.

Theorem 1. The motion described by equation (3), for small ε = kT/(γ~) asymp-

totically splits into rapid and slow motion.

1) After rapid motion the arbitrary wave function φ(x, p, 0) goes, in time of order

1/γ, to a function which after normalization has the form

φ0(x, p) =
1

(2π~)n/2

∫
Rn

ψ(y)χ(x− y)eip(x−y)/~dy, (14)

where ||ψ|| = 1 and χ(x− y) =

(
kTm

π~2

)n/4

e−kTm(x−y)2/(2~2), (15)

The wave functions of the form (14) form a linear space. The elements of this subspace

are parameterized by the wave functions ψ(y) depending only on coordinates y ∈ Rn.

2) The slow motion starting from the wave function φ0(x, p) of the form (14) with

nonzero function ψ(y), goes inside the subspace and is parameterized by the wave function

ψ(y, t) depending on time. The function ψ(y, t) satisfies the Schrodinger equation of the

form i~∂ψ/∂t = Ĥψ, where

Ĥψ = − ~2

2m

( n∑
k=1

∂2ψ

∂y2k

)
+ V (y)ψ +

kT

2
nψ +mc2ψ. (16)

Proof of the first part of Theorem 1 is given in [2]. Proof of the second part of the

Theorem is given in Appendix 1 to the present paper.

Theorem 2. The projection operator P0 transforming an arbitrary integrable function

φ(x, p) on the phase space into the function of the form (14) (but without normalization),
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obtained after rapid motion described in Theorem 1, reads as follows:

P0φ =
1

(2π~)n

∫
Rn

ψ(y)e−
kT (x−x′)2

2~2 e
ip(x−x′)

~ dy, where ψ(y) =

∫
R

φ(y, p)dp. (17)

This Theorem follows from the definition of the operator P0 and from formula (13)

expressed in the initial coordinates (5).

Theorem 3. If ψ(x) is a wave function on the configuration space and φ0(x, p) is the

wave function on the phase space corresponding to it by formula (14), then the density of

probability ρ(x, p) = |φ0(x, p)|2 in the phase space is given by the following formula:

ρ(x, p) =
1

(2π~)n

(
kTm

4π~2

)n/2 ∫
R2n

ψ

(
x+

x′′ − x′

2

)
ψ∗
(
x+

x′′ + x′

2

)
(18)

exp

(
−kTm(x′′)2

4~2

)
exp

(
−kTm(x′)2

4~2

)
exp

(
ix′p

~

)
dx′′dx′.

In contrast to quasidistributions

W (x, p) =
1

(2π~)n

∫
Rn

ψ

(
x− x′

2

)
ψ∗
(
x+

x′

2

)
exp

(
ix′p

~

)
dx′

defined by Wigner [7], the density ρ(x, p) in the phase space, given by the expression (18),

is always nonnegative. Its expression differs from the expression of the Wigner function by

exponents under the integral, which yield smoothing with respect to distribution densities

close to the delta-functions.

Proof of Theorem 3 is given in [2].

The algebra of observables given by real functions on the phase space, averaged by

densities of probability distributions of the form (18), has been studied in [8].

Since the probability distribution ρ(x) in the configuration space is expressed by the

formula ρ(x) =
∫
R3 ρ(x, p)dp, by integrating the expression (18) over p we obtain the

following statement.

Corollary 1. If ψ(x) is the wave function on the configuration space, then the cor-

responding density ρ(x) in the configuration space is given by the formula

ρ(x) =

∫
R3

|ψ(y)|2χ2(x− y)dy, (19)

where χ(x, y) is expressed by relation (15). That is, ρ(x) is obtained from |ψ(x)|2 by

smoothing (convolution) with respect to the density of the normal distribution with dis-

persion ~2/(2kTm), and the exactness of defining coordinate is bounded by the quantity

∼ ~/
√
2kTm called the de Broglie length of the heat wave.

Theorem 4. If the number ε = kT/(γ~) ≪ 1, then the first order perturbations

of the zero eigenvalue of the operator B′ in equation (6) equal to the eigenvalues of the

operator −i/(γ~)Ĥ, where Ĥ is the Hamilton operator given by formula (16). If the real
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parts of the second order perturbations corresponding to these first order perturbations are

different from one another, then any solution of equation (3) will go in time proportional

to 1/(γε2) = γ~2/(kT )2, to one of the eigenstates of the Hamilton operator.

Proof of the Theorem is given in Appendix 2.

This theorem describes the process called in the literature by decoherence of quan-

tum states [9], [10], [11]. The form of the estimate of the time of decoherence given in

Theorem 4, somewhat differs from the form of the estimate given in the literature, for

instance in [10]. The study of the correspondence of these estimates is the subject of

another future work.

According to Theorem 4 the process described by equation (3), in time proportional

to γ~2/(kT )2, goes to one of eigenstates of the Hamilton (energy) operator. Further, on

large scales of time the system, under the action of the heat medium, will jump from

one eigenstates to others due to large deviations of the random process. In the limit as

t→ ∞ the system will go to the mixed state corresponding to the heat equilibrium Gibbs

state.

We have studied equation (3) for small value of ε = kT/(γ~) and obtained that

the process described by this equation is asymptotically close to the process having the

standard quantum description. Let us now consider the same equation in the case when

the quantity ε is large.

Theorem 5. If ε = kT/(γ~) ≫ 1, i. e. γ~/(kT ) ≪ 1, where γ = β/m is the resis-

tance of medium per unit of mass, then the operator B in equation (3) can be neglected,

and in this case the density of probability distribution ρ(x, p, t) = φ(x, p, t)φ∗(x, p, t) sat-

isfies the following classical Liouville equation:

∂ρ

∂t
=

n∑
j=1

(
∂V

∂xj

∂ρ

∂pj
− pj
m

∂ρ

∂xj

)
. (20)

Proof of the Theorem follows from the fact that equation (3) without the operator B

is a partial differential equation of first order, consisting of sum of the Liouville operator

and the operator of multiplication by a function. The solution φ(x, p, t) of such equation

is obtained from the initial state φ(x, p) = φ(x, p, 0) and the characteristics x(t), p(t) of

the equation with the following initial conditions: x(0) = x, p(0) = p, in the following

form:

φ(x, p, t) = φ(x(t), p(t)) exp

(
−i/~

∫ t

0

(H(x(t), p(t))− p2(t)/(2m))dt

)
.

Respectively, we have:

ρ(x, p, t) = φ(x, p, t)φ∗(x, p, t) = φ(x(t), p(t))φ∗(x(t), p(t)) = ρ(x(t), p(t)).

Therefore, the phase of the wave is inessential, and the density ρ(x, p, t) satisfies the

Liouville equation.

Thus, Theorem 5 states that for small value of β~/(kTm) the process described

by equation (3) is asymptotically close to the process with the classical (non-quantum)
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description of the motion of the particle. This case arises when the mass m of the particle

is large relative to the medium resistance β.

Conclusion

In quantum optics, one now widely uses methods of study of dynamics of quantum

processes in the phase space, see, for example, [12], where, in particular, one considers

dynamics of wave packets and interference in the phase space. On this way, one manages

to model dynamics of ions in traps, optics of atoms in quantum light fields, etc. “This

approach which stresses the fundamental role of phase variables allows one to expose and

interprete very clearly various branches of quantum optics...” (from the abstract of the

book [12]).

These achievements lead to an assumption that it would be useful to consider not

only the behavior of distributions in the phase space, as it is done, for example, in [12],

[13], [14], but also to introduce the wave function itself on the phase space.

In the present work, following this direction, we construct a diffusion equation for

the wave function with large frequency of oscillations in the phase space, describing the

process of heat scattering of a wave in the phase space. In the presented model one

meets both classical and quantum mechanics behavior of the particle. If the quantity

ε = kTm/(β~) is small, then in this model the behavior of the particle, after short

transition stage (of order m/β < ~/kT = 0.77 · 10−12/T sec.) amounts to the standard

picture of quantum mechanics with the Heisenberg indeterminacy principle and with

the Schrodinger equation describing the dynamics. And if the quantity ε is large, then

the particle behaves according to classical mechanics, and the density of probability

distribution of the particle in the phase space satisfies the classical Liouville equation.

In the general case, the behavior of the particle described by this model is of mixed

nature. It would be interesting to analyze the model in this case and compare it with

results of experiments for particles with intermediate values of ε.

One should also compare with experimental data the estimate of time of decoherence

given in Theorem 4. Besides that, one should find a theoretical estimate of the transition

time of the quantum system to the mixed state of heat equilibrium in this model.

One should also acknowledge numerous works of predecessors, due to which the sub-

ject of this paper arose, the problem has been stated and the methods of its solution have

been found. This is a separate large work. In science, posing right questions gives no less

than the results obtained. Bright examples of it are the questions of A. Einstein, due to

which quantum mechanics was founded and develops up to now.

In the works of V. P. Maslov [15, 16] one has already studied certain problem of

description of motion of a distribution of charges in the phase space under action of a

random field. In [15] under certain assumptions it is proven that if the initial distribution

of charges, depending on coordinates and momenta, belongs to certain subspace, parame-

terized by complex valued functions depending on coordinates, then the distribution does

not leave this subspace, and the dynamics of such system is described by the correspond-
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ing Schrodinger equation. This result has certainly influenced the author while posing

the problem of the present work.
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Appendices

Appendix 1. Proof of Part 2 of Theorem 1

Consider equation (3) in the dimensionless system of variables (5). In these variables,

the equation takes the form (6), and “stationary” solutions, to which arbitrary solutions

of equation (6) tend at time t′ of order 1, have the form (13).

Let φ0(x
′, p′, t′) be a function of the form (13) corresponding to the function ψ(y′, t′).

Let us substitute this expression into equation (6), and let us take projection of both

parts of this equation to the space of functions ψ(y′, t′) by formula (13). We have:∫
Rn

∂φ0

∂t′
dp′ =

∫
Rn

(
kT

γ~
A′ +B′

)
φ0dp

′

or, taking into account that B′φ0 = 0, after substitution of expression φ0(x
′, p′, t′) in the

form (13), we obtain:

1

(2π)n

∫
R2n

∂ψ(y′, t′)

∂t′
e−

(x′−y′)2
2 eip

′(x′−y′)dy′dp′

=
kT

γ~
1

(2π)n

∫
R2n

A′ψ(y′, t′)e−
(x′−y′)2

2 eip
′(x′−y′)dy′dp′.

Let us integrate the right hand side of this equality over p′ and over y′. Noting that in

the right hand side of the equality we have the delta function, we obtain:

∂ψ(x′, t′)

∂t′
=
kT

γ~
1

(2π)n

∫
R2n

A′ψ(y′, t′)e−
(x′−y′)2

2 eip
′(x′−y′)dy′dp′.

Taking into account expression (7) for operator A′, we deduce from the latter equality

that

∂ψ

∂t′
=
kT

γ~
1

(2π)n

∫
R2n

(
n∑

j=1

(
∂V ′

∂x′j

∂

∂p′j
− p′j

∂

∂x′j

)
− i

(
mc2

kT
+ V ′ −

n∑
j=1

(p′j)
2

2

))

×ψ(y′, t′)e−
(x′−y′)2

2 eip
′(x′−y′)dy′dp′ =

kT

γ~
(I1 + I2 + I3 + I4), (21)

where

I1 =
1

(2π)n

∫
R2n

n∑
j=1

∂V ′(x′)

∂x′j

∂

∂p′j

(
ψ(y′, t′)e−

(x′−y′)2
2 eip

′(x′−y′)

)
dy′dp′; (22)

I2 = − 1

(2π)n

∫
R2n

n∑
j=1

p′j
∂

∂x′j

(
ψ(y′, t′)e−

(x′−y′)2
2 eip

′(x′−y′)

)
dy′dp′; (23)

I3 = −i 1

(2π)n

∫
R2n

(
mc2

kT
+ V ′(x′)

)
ψ(y′, t′)e−

(x′−y′)2
2 eip

′(x′−y′)dy′dp′; (24)

I4 = i
1

(2π)n

∫
R2n

n∑
j=1

(p′j)
2

2
ψ(y′, t′)e−

(x′−y′)2
2 eip

′(x′−y′)dy′dp′. (25)

Евгений
Cross-Out

Евгений
Inserted Text
 = 



Electronic Journal of Theoretical Physics 8, No. 25 (2011) 1–16 11

Consider the integral I1 given by expression (22). Let us exchange summation and

integration, let us put behind the sign of integral expressions not depending on integration

variables, let us compute the derivatives with respect to p′j, and let us integrate the

remaining integrals over p′ and y′. We obtain:

I1 =
i

(2π)n

n∑
j=1

∂V ′(x′)

∂x′j

∫
R2n

ψ(y′, t′)e−
(x′−y′)2

2 (x′j − y′j)e
ip′(x′−y′)dy′dp′ = 0 (26)

Consider the integral I2 given by expression (23). Let us exchange summation and

integration, let us transfer the derivatives with respect to x′j behind the sign of integral,

let us replace the expressions p′j exp(ip
′(x′ − y′)) by equal expressions i∂ exp(ip′(x′ −

y′))/(∂y′j), and let us integrate the obtained integrals by parts. We have:

I2 = − 1

(2π)n

n∑
j=1

∂

∂x′j

∫
R2n

ψ(y′, t′)e−
(x′−y′)2

2 i
∂

∂y′j
eip

′(x′−y′)dy′dp′

=
i

(2π)n

n∑
j=1

∂

∂x′j

∫
R2n

∂ψ(y′, t′)

∂y′j
e−

(x′−y′)2
2 eip

′(x′−y′)dy′dp′

− i

(2π)n

n∑
j=1

∂

∂x′j

∫
R2n

ψ(y′, t′)(x′j − y′j)e
− (x′−y′)2

2 eip
′(x′−y′)dy′dp′

= i

n∑
j=1

∂2ψ(x′, t′)

∂(x′j)
2

. (27)

Consider the integral I3 given by expression (24). Let us transfer behind the sign of

integral the expressions not depending on the integration variables, and let us integrate

the remaining integral over p′ and y′. We obtain:

I3 = −i
(
mc2

kT
+ V ′(x′)

)
1

(2π)n

∫
R2n

ψ(y′, t′)e−
(x′−y′)2

2 eip
′(x′−y′)dy′dp′

= −i
(
mc2

kT
+ V ′(x′)

)
ψ(x′, t′). (28)

Consider the integral I4 given by expression (25). Let us exchange summation and

integration, let us transfer 1/2 behind the sign of integral, let us replace the expression

(p′j)
2 exp(ip′(x′ − y′)) by the second derivative of the function − exp(ip′(x′ − y′)) with
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respect to y′j, and let us integrate the obtained integrals by parts. We have:

I4 = − i

2

1

(2π)n

n∑
j=1

∫
R2n

ψ(y′, t′)e−
(x′−y′)2

2
∂2

∂(y′j)
2
eip

′(x′−y′)dy′dp′

= − i

2

1

(2π)n

n∑
j=1

∫
R2n

(
∂2ψ

∂(y′j)
2
− 2

∂ψ

∂y′j
(x′j − y′j) + ψ(x′j − y′j)

2 + ψ

)
×e−

(x′−y′)2
2 eip

′(x′−y′)dy′dp′

= − i

2

(
n∑

j=1

∂2ψ(x′, t′)

∂(x′j)
2

+ nψ(x′, t′)

)
. (29)

Let us substitute the obtained expressions for integrals I1, . . . , I4 into equality (21),

let us sum up similar terms, and let us transfer −i behind the brackets. We obtain,

∂ψ

∂t′
= − i

~
kT

γ

(
−1

2

∂2

∂(x′j)
2
+ V ′ +

mc2

kT
+
n

2

)
ψ(x′, t′).

If in the obtained equality we pass to the initial coordinate system (5), then we obtain

the equality (16) required in Part 2 of Theorem 1.
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Appendix 2. Proof of Theorem 4

Consider equation (6) of the form ∂φ/∂t′ = εA′φ + B′φ. Let P0 be the projector onto

the subspace of eigenfunctions of operator B′ with eigenvalue 0. Then, by definition of

P0, we have the equalities:

P0P0 = P0; P0B
′ = B′P0 = 0.

We shall denote by φ0 a function belonging to the image of projector P0, i. e. φ0 = P0φ0.

Note that by construction of operator Ĥ from Theorem 1, given in Appendix 1, the

operator εP0A
′ on the subspace of functions φ0, in the presentation by the functions

ψ(y) has the form −i/(γ~)Ĥ. Hence the eigenvalues of operators εP0A
′ and −i/(γ~)Ĥ

coincide. Since the operator Ĥ is self-adjoint, it has a complete system of eigenfunctions,

and therefore the operator εP0A
′ on the subspace of values of the projector P0 also has

a complete system of eigenfunctions.

Let us state the result thus obtained as a Lemma.

Lemma. The eigenvalues of operators εP0A
′ and −i/(γ~)Ĥ coincide. The operator

εP0A
′ has a complete system of eigenfunctions on the subspace of values of the projector

P0.

Consider the eigenvalue problem for equation (6) of the form λεφε = (εA′ +B′)φε.

According to perturbation theory, let us look for solutions as series:

λε = λ0 + ελ1 + ε2λ2 + ...

φε = φ0 + εφ1 + ε2φ2 + ...

Let us substitute these series into the eigenvalue equation and compare coefficients before

equal powers of ε. We obtain:

(ε0) λ0φ0 = B′φ0;

(ε1) λ1φ0 + λ0φ1 = A′φ0 +B′φ1;

We are interested in perturbations of eigenvalue λ0 = 0. In this case equation (ε0)

means that φ0 is an eigenfunction of operator B′ with eigenvalue 0.

Let us apply the operator εP0 to both parts of equality (ε1). Taking into account the

equalities P0φ0 = φ0, λ0 = 0, and P0B
′ = 0, we obtain:

ελ1φ0 = εP0A
′φ0.

Hence the quantity ελ1 is an eigenvalue of the operator εP0A
′ on the subspace of

values of the projector P0, and by the Lemma the quantity ελ1 is an eigenvalue of the

operator −i/(γ~)Ĥ. On the other hand, the quantity ελ1 is by definition a first order

correction to the eigenvalue 0 of the operator εA′ +B′.

Thus, the first part of Theorem 4 is proved.
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To prove the second part, let us present an arbitrary function φ0(t
′) from the subspace

of values of the projector P0 as a sum (or integral for continuous spectrum):

φ0(t
′) =

∞∑
k=1

ck(t
′)φk

0,

where φk
0 are the eigenfunctions of the operator P0A

′ with eigenvalues λk1. This is possible,

since by the Lemma such functions form a complete system. Besides that, the same

Lemma implies that the numbers λk1 are pure imaginary, since they are eigenvalues of the

operator −i/(εγ~)Ĥ, where Ĥ is a self adjoint Hamilton operator with real spectrum.

Let λkε ≈ ελk1 + ε2λk2, and φk
ε ≈ φk

0 + εφk
1 be the approximations of eigenvalues

and eigenfunctions corresponding to eigenfunctions φk
0. By assumptions of Theorem 4

the real parts Reλk2 are different for various k.

Consider equation (6) restricted to the subspace spanned by the basis vectors of the

form φk
ε with the function of the form

φ(t′) =
∞∑
k=1

ck(t
′)φk

ε .

In this basis the equation splits (up to terms of order ε3) into a system of equations

numbered by k of the form:

∂ck(t
′)

∂t′
= (ελk1 + ε2λk2)ck(t

′),

whose solution reads as follows: ck(t
′) = ck(0) exp((ελ

k
1 + ε2λk2)t

′). Hence, the solution of

equation (6) is approximately presented in the following form:

φ(t′)=
∞∑
k=1

ck(0) exp((ελ
k
1 + ε2λk2)t

′)φk
ε

=
∞∑
k=1

ck(0) exp((ελ
k
1 + ε2λk2)t

′)(φk
0 + εφk

1)

=
∞∑
k=1

ck(0) exp((ελ
k
1 + ε2λk2)t

′)φk
0 +

∞∑
k=1

ck(0) exp((ελ
k
1 + ε2λk2)t

′)εφk
1

=φ0(t
′) + εφ1(t

′), (30)

where φ0(t
′) =

∞∑
k=1

ck(0) exp((ελ
k
1 + ε2λk2)t

′)φk
0; (31)

φ1(t
′) =

∞∑
k=1

ck(0) exp((ελ
k
1 + ε2λk2)t

′)φk
1. (32)

Since ε is small, equality (30) implies that the solution φ(t′) has a small difference

with the function φ0(t
′) given by expression (31).
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Since ελk1 is imaginary, each summand in the sum giving the function φ0(t
′) in ex-

pression (31), decreases in time t′ = γt proportionally to

exp(ε2Re(λk2)t
′) = exp(γε2Re(λk2)t),

where Re(λk2) is the real part of the number λk2. This implies that after the time t ∼
1/(γε2) this sum will be determined by the summand with the maximal number Re(λk2)

among the summands with the valuable coefficients ck(0).

Thus, Theorem 4 is proved.
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